Theorie Technischer Systeme Verfahren

TECHNIK HOCHSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES		Stand: 27.01.2022			
Modulbezeichnung	Theorie Technischer Systeme Verfahren	Studiengang		Wahlpflicht	
Studienabschnitt /	-			Š	
Level	M Bauingenieurwesen				
Kürzel	TTS-VER	Bachelor		<u> </u>	
Fachachica	The series would be settled as	Vertiefung Baubetrieb		<u> </u>	
Fachgebiet	Theorie und Systeme	Vertiefung Konstruktiv			
		Vertiefung Umwelt + Planung			
Studiensemester	Keine Beschränkung	Master –Bauen im Bestand-			
		Vertiefung Baubetrieb			
Angebotsturnus	Wintersemester	Vertiefung Konstruktiv			
		Internationales Bauingenieurweser	n		
Dauer des Moduls	1 Semester	Bachelor			
		Bau-, Immobilienmanagement Technisches Immobilienmanageme	ent		
Sprache	Deutsch	Bachelor BIM			
		Bachelor TIM Dual			
		Master BIM		Х	
Credits / Gewichtung	6/6	Master TIM		Х	
ordato / Gewiontang		Wirtschaftsingenieurwesen (Bau)			
		Bachelor			
	60 h Präsenzzeit = 4 SWS Vorlesung				
Arbeitsaufwand (work load)	120 h Eigenständiges Studium (MaTIM 90 h)				
(work load)	180 h Gesamtaufwand (MaTIM 150 h)				
Modulverantwortliche(r)	Prof. Dr. rer. nat. Alfons Buchmann				
weitere Dozierende	Praxisvorträge zu Anwendungsbeispielen für technische Systeme				
Veranstaltungsform / Aufteilung in Lehrgebiete	Vorlesung				
Voraussetzungen nach Prüfungsordnung	-				
Empfohlene Voraussetzungen	TTS GRU				

Fortschrittskontrolle	-Vorlesungsintegrierte Übungen			
Studienleistung		ja	nein	Art
	Prüfungsvorleistung		Х	
	Eigenständige Leistung		Х	
Prüfungsleistung	Klausur 120min			

Lern-/Qualifikationsziele	Die Studierenden können (durch Prüfung nachgewiesen) systemtheoretische Verfahren zur Analyse und Lösung komplexer technischer Aufgaben anwenden. Insbesondere können sie die Verfahren der Sensitivitätsanalyse, der Systemoptimierung, der Graphentheorie und der Spieltheorie auf konkrete Problemstellungen der Praxis anwenden.	
Modulinhalt	In der Vorlesung werden die folgenden Themen behandelt: 1. Systemisches Denken (Verfahren) - Arbeitshilfen für systemisches Denken (Sensitivitätsanalyse) - Kriterienmatrix, Einflussmatrix und Konsensmatrix - Wirkungsgefüge und Teilszenarien - Simulationen und Policy Tests - Anwendungsbeispiele 2. Optimieren von Systemen - Von der realen Welt zum Plan - Analytische Verfahren zur Lösung von Optimierungsproblemen - Optimierungsprobleme mit Nebenbedingungen - Lineare Optimierung - Das Simplex Verfahren mit Anwendungsbeispielen 3. Graphentheoretische Verfahren und deren Anwendungen - Systemstruktur und Graphen - Eulersche und Hamiltonsche Graphen - Traveling Salesman Problem - Kruskal und Greedy Algorithmen - Der kürzeste Weg und Dijkstra Algorithmus - Chinese Postman Problem und Lösungsverfahren - Zuordnungsprobleme, Matchings und perfekte Matchings 4. Spieltheorie - Matrixspiele und deren Anwendungen - Reine und gemischte Strategien - Formulierung als lineares Optimierungsproblem - Näherungsverfahren - Warteschlangentheorie 5. Praxisvorträge von GastDozierende - Praxisvorträge zu Anwendungsbeispielen für technische Systeme	
Literatur	V. K. Balakrishnan: Graph Theory, Schaum's Outline, McGraw-Hill, 1997 G. Dahlquist and A. Björck: Numerical Methods, Prentice Hall, Englewood Cliffs, 1974 W. Domschke, A. Drexl: Einführung in Operations Research, Springer, Berlin, 2007	

Peter Gritzmann und René Brandenberg: Das Geheimnis des kürzesten Weges, Springer Verlag, 2002
Lehr- und Übungsbuch Mathematik, Band IV, Harri Deutsch, Frankfurt
Manfred Nietzsche: Graphen für Einsteiger, Vieweg+Teubner, 2009
F. Vester: Die Kunst vernetzt zu denken - Ideen und Werkzeuge für einen neuen Umgang mit der Komplexität, 8. Auflage, dtv, München, 2011
Die Vorlesungsfolien werden zur Verfügung gestellt.