

Modulname

Baudynamik

<u>Prüfungsnummer</u>	Buchstabe-Ziffer-Kombination	<u>Studienverlauf</u>
MaBau 15400, 15410(SL), 154120(PL)		Schwerpunktstudium

Lehr- und Lernformen

Kombination aus Vorlesung und Inverted Classroom.

Voraussetzungen für die Teilnahme

obligatorisch: -

wünschenswert: Alle Bachelormodule bestanden, sowie Höhere Mathematik

Verwendbarkeit

Im Bauingenieurwesen insbesondere Anwendung im Konstruktiven Ingenieurbau. Grundlegendes Verständnis auch von Bedeutung für den Baubetrieb sowie den Bereich Wasser und Umwelt.

Voraussetzungen für die Vergabe von ECTS-Leistungspunkten

Bestandene Prüfungsvorleistung: 2 Tests (45 Minuten/Test), Bestandene Klausur (180 Minuten)

ECTS-Leistungspun	<u>Arbeitsaufwand</u>	<u>Angebotsturnus</u>	Dauer des Moduls	<u>Sprache</u>
6	180h	Sommersemester	3 SWS + 1 SWS Übung	Deutsch

<u>Studienleistung</u>

Prüfungsvorleistung: 2 Tests (45 Minuten/Test)

<u>Prüfungsleistung</u>

Klausur 180 min.

<u>Modulverantwortlicher</u>	<u>Dozenten</u>
Neujahr	-

Qualifikationsziele (Kompetenzen)

Die Studierenden können (durch Prüfung nachgewiesen):

- Bewegungen von Punkten und starren Körpern in geeigneten Koordinaten mathematisch beschreiben.
- Kraftgrößen infolge Punktmassen (Trägheitskräfte) und starren Körpern (Trägheitsmomente) ermitteln.
- Bewegungsgleichungen kinematischer Strukturen aus starren Elementen aus Gleichgewichtsbedingungen herleiten.
- Bewegungsgleichungen kinematischer Strukturen aus starren Elementen aus Energieprinzipien herleiten.
- Bewegungsgleichungen kinematischer Systeme aus starren Elementen lösen.
- Bewegungsgleichungen diskreter Strukturen aus allgemeinen Elementen aus Gleichgewichtsbedingungen herleiten.
- Bewegungsgleichungen diskreter Strukturen aus allgemeinen Elementen aus Energiemethoden herleiten.
- Bewegungsgleichungen diskreter Strukturen aus allgemeinen Elementen im Zeit- und Frequenzbereich lösen.
- Bewegungsgleichungen kontinuierlich massebelegter Stäbe als Welle (d'Alembert) / Schwingung (Bernoulli) lösen.

- Bewegungsgleichungen kontinuierlich massebelegter Balken und elastisch gebetteter/schubgebetteter Balken lösen.
- Elementgleichungen für kontinuierlich massebelegte Stäbe und elastisch gebettete Stäbe herleiten.
- Elementgleichungen für kontinuierlich massebelegte Balken und elastisch (schub)gebetteter Balken herleiten.
- Diskretisierte Elemente (Elementgleichungen) zur Herleitung von Bewegungsgleichungen verwenden.
- Wellenbewegungen in Stäben exakt beschreiben und im Raum qualitativ beschreiben (Wellenreflektion).
- Die Wirkung der Komponenten von Schwingungsisolationen uns Schwingungstilgern qualitativ beschreiben.
- Einfache Schwingungsisolationen und Schwingungstilger auslegen.
- Das im Rahmen der Erdbebenanalyse angenommene Verhalten und Verhaltensfaktoren qualitativ beschreiben.
- Erdbebenanalysen von allgemeine Strukturen und Hochbauten durchführen.
- Antwortspektren infolge von Erdbeben interpretieren und mit dem Strukturverhalten in Verbindung bringen.
- Grundsätze des erdbebengerechten Tragwerksentwurfs benennen und auf Anwendungen übertragen.
- Grundsätze für die erdbebengerechten konstruktive Durchbildung benennen und auf Anwendungen übertragen.

Inhalt

In der Lehrveranstaltung werden die folgenden Themen behandelt:

- 1. Dynamik starrer Körper
- Grundlagen der Kinematik: Punkt, starrer Körper.
- Grundlagen der Kinetik: Massenpunkt, starrer Körper.
- Arbeit, Energie, Potential: Arbeitssatz, Massenpunkt, starrer Körper, Energieprinzipien.
- Anwendungen der Baudynamik Lagerreaktionen, Schnittgrößen, Physikalische Pendel
- 2. Dynamik diskreter Strukturen
- Beschreibung diskreter Strukturen:

Elastische Elemente, Massenelemente, Dämpfungselemente, Strukturgleichungen.

Strukturen mit einem Freiheitsgrad (1 FG):

Bewegungsgleichung, freie Schwingung, erzwungene Schwingung, Integration im Zeitbereich, Analyse im Frequenzbereich/Antwortspektren. Transiente Anregung im Zeit- und Frequenzbereich.

• Strukturen mit mehreren Freiheitsgraden (n FG):

Bewegungsgleichung, Direkte Analyse, Modale Analyse, Ebene diskrete Systeme, Räumliche diskrete Systeme.

- Energiemethoden: Lagrange Gleichung, Rayleigh-Ritz-Methode
- 3. Dynamik kontinuierlicher Strukturen
- Stäbe: Bewegungsgleichung, freie Schwingung (Wellengleichung) des Stabs und elastisch gebetteten Stabs, Lösung nach d'Alembert/Bernoulli, Modale Analyse, Interferenz, Welle und Schwingung, Elementgleichung.
- Balken: Bewegungsgleichung, freie Schwingung (Schwingungsgleichung) des Balkens und des elastisch (schub)gebetteten Balkens, Modale Analyse, Elementgleichung.
- Energiemethoden: Energie und Potentiale, Bewegungsgleichungen des Stabs und des Balkens, Rayleigh-Ritz-Methode, Finite-Element-Methode, Einsatz diskretisierter Elemente.
- Räumliche Kontinua (Einführung): Räumliche Bewegungsgleichung, Wellen im Raum, Wellen im Halbraum, Bedeutung in der Baupraxis.
- 4. Einführung in das Ingenieurwesen
- Erschütterungs- und Schwingungsschutz: Schwingungsisolation, Schwingungstilgung, Anwendungen in der Baupraxis.
- Erdbebenanalyse: Idealisiertes Verhalten/Verhaltensfaktoren, Allgemeine Analysemethoden, Ermittlung von Antwortspektren, Analyse allgemeinen Strukturen und Hochbauten.
- Erdbebeningenieurwesen: Duktilität als Grundlage des Tragwerksentwurfs/Verhaltensfaktoren, Grundsätze für den Tragwerksentwurf von Hochbauten, Grundsätze für die konstruktive Durchbildung.

Literaturhinweise

- Gross, Hauger et.al.: Technische Mechanik 3, Kinetik, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 3, Springer Verlag.
- Gross, Hauger et.al.: Technische Mechanik 4, Höhere Mechanik, Numerische Methoden, Springer Verlag.
- Gross, Hauger et.al.: Formeln und Aufgaben zur Technischen Mechanik 4, Springer Verlag.
- Dinkler: Einführung in die Strukturdynamik, Springer Verlag.
- Gosch, Knothe: Strukturdynamik, Springer Verlag.
- Haupt: Bodendynamik: Grundlagen und Anwendungen, Vieweg Verlag.
- Bachmann: Erdbebensicherung von Bauwerken, Birkhäuser Verlag.
- Bachmann et.al. Vibration Problems in Structures, Birkhäuser Verlag.
- Claugh, Penzien: Dynamics of Structures, McGraw-Hill Publication.
- Chopra: Dynamics of Structures, Theory ans Applications to Earthquake Engineering. Prentice Hall Publication.
- Paulay, Priestley: Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley @ Sons Publication.