Modulhandbuch Bachelor-Studiengang Geoinformatik und Vermessung

Lehreinheit
Geoinformatik und Vermessung

Stand: September 2011
Inhaltsverzeichnis

Ziele des Bachelor-Studiengangs Geoinformatik und Vermessung .. 3
Übersicht über die Modulfolge im Bachelor-Studiengang Geoinformatik und Vermessung (Studienbeginn im Wintersemester) .. 4
Übersicht über die Modulfolge im Bachelor-Studiengang Geoinformatik und Vermessung (Studienbeginn im Sommersemester) .. 5
Mathematik 1 ... 6
Mathematik 2 .. 7
Ausgleichungsrechnung und Statistik ... 8
Geodätische Referenzsysteme ... 10
Geodätische Rechenmethoden .. 12
Grundlagen der Sensorik .. 14
Computer Aided Design (CAD) ... 15
Einführung in die Geoinformatik ... 17
Kartografie ... 19
Digitale Bildverarbeitung .. 21
Anwendungsbezogene Software-Entwicklung (Wahlpflicht) .. 23
Informatik ... 24
Objektorientierte Programmierung .. 25
Datenbanken und Internet .. 26
Amtliche Geo-Basisinformation ... 28
Vermessung 1 .. 29
Vermessung 2 .. 31
Vermessung 3 .. 33
Vermessung 4 .. 35
Vermessung 5 .. 36
Ingenieurbau und Geologie (Wahlpflicht) ... 38
Photogrammetrische Datenerfassung ... 40
Kommunales Bodenmanagement und Landentwicklung ... 41
Technisches Englisch ... 45
Präsentationstechnik .. 46
Recht ... 47
Betriebswirtschaftslehre und Projektmanagement .. 48
Praxisprojekt ... 50
Bachelor Thesis ... 51
Ziele des Bachelor-Studiengangs Geoinformatik und Vermessung

Übersicht über die Modulfolge im Bachelor-Studiengang Geoinformatik und Vermessung (Studienbeginn im Wintersemester)

Systematik: 6 ECTS–Anrechnungspunkte pro Modul, 5 SWS pro Modul, 5 Module pro Semester (30-ECTS-Anrechnungspunkte / Semester)

<table>
<thead>
<tr>
<th>Grundlagenwissen</th>
<th>Modul zur Geoinformatik</th>
<th>Modul zur Vermessung</th>
<th>Allgemeine Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik 1</td>
<td>V 3</td>
<td>Ü 2</td>
<td>Vermessung 1</td>
</tr>
<tr>
<td>Geodätische Rechenmethoden</td>
<td>V 3</td>
<td>Ü 2</td>
<td></td>
</tr>
<tr>
<td>Computer Aided Design (CAD)</td>
<td>V 0</td>
<td>Ü 5</td>
<td></td>
</tr>
<tr>
<td>Informatik</td>
<td>V 2</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>2. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>V 3</td>
<td>Ü 2</td>
<td>Vermessung 2</td>
</tr>
<tr>
<td>Grundlagen der Sensorik</td>
<td>V 3</td>
<td>Ü 2</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Geoinformatik</td>
<td>V 3</td>
<td>Ü 2</td>
<td></td>
</tr>
<tr>
<td>Objektorientierte Programmierung</td>
<td>V 2</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>3. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgleichungsrechnung und Statistik</td>
<td>V 2</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Kartografie</td>
<td>V 3</td>
<td>Ü 2</td>
<td>Photogrammetie</td>
</tr>
<tr>
<td>4. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geodätische Referenzsysteme</td>
<td>V 3</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Digitale Bildverarbeitung</td>
<td>V 3</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Datenbanken und Internet</td>
<td>V 3</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Vermessung 4</td>
<td>V 2</td>
<td>Ü 3</td>
<td>Präsentations-technik (4 ECTS-Punkte)</td>
</tr>
<tr>
<td>5. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwendungsbezogene Software-Entwicklung</td>
<td>V 2</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Amtliche Geo-Basisinformation</td>
<td>V 2</td>
<td>Ü 3</td>
<td></td>
</tr>
<tr>
<td>Vermessung 5</td>
<td>V 2</td>
<td>Ü 3</td>
<td>Kommunales Bodenmanagement und Landentwicklung</td>
</tr>
<tr>
<td>6. Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praxisprojekt (18 ECTS–Anrechnungspunkte; 16 Wochen)</td>
<td></td>
<td>Bachelor-Thesis (12 ECTS–Anrechnungspunkte; 10 Wochen)</td>
<td></td>
</tr>
</tbody>
</table>

V i = i SWS Vorlesung Ü i = i SWS Übungen
weiße Felder = Pflichtmodule, sind in jedem Fall von allen zu belegen
graue Felder = Wahlpflichtmodule; eins von den beiden Modulen ist zu wählen

Übersicht über die Modulfolge im Bachelor-Studiengang Geoinformatik und Vermessung (Studienbeginn im Sommersemester)

Systematik: 6 ECTS–Anrechnungspunkte pro Modul | 5 SWS pro Modul | 5 Module pro Semester
(30-ECTS-Anrechnungspunkte / Semester)

<table>
<thead>
<tr>
<th></th>
<th>Grundlagenwissen</th>
<th>Module zur Geoinformatik</th>
<th>Module zur Vermessung</th>
<th>Allgemeine Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Semester</td>
<td>Mathematik 1</td>
<td>Geodätische Rechenmethoden</td>
<td>Computer Aided Design (CAD)</td>
<td>Vermessung 2</td>
</tr>
<tr>
<td></td>
<td>V 3 Ü 2</td>
<td>V 3 Ü 2</td>
<td>V 0 Ü 5</td>
<td>V 2 Ü 3</td>
</tr>
<tr>
<td>2. Semester</td>
<td>Ausgleichungsrechnung und Statistik</td>
<td>Informatik</td>
<td>Vermessung 1</td>
<td>Photo-grammetrie</td>
</tr>
<tr>
<td></td>
<td>V 2 Ü 3</td>
<td>V 2 Ü 3</td>
<td>V 2 Ü 3</td>
<td>V 2 Ü 3</td>
</tr>
<tr>
<td>3. Semester</td>
<td>Grundlagen der Sensorik</td>
<td>Einführung in die Geoinformatik</td>
<td>Objektorientierte Programmierung</td>
<td>Vermessung 3</td>
</tr>
<tr>
<td></td>
<td>V 3 Ü 2</td>
<td>V 3 Ü 2</td>
<td>V 3 Ü 2</td>
<td>V 2 Ü 3</td>
</tr>
<tr>
<td>4. Semester</td>
<td>Kettenplanung</td>
<td>Anwendungsbezogene Softwareentwicklung</td>
<td>Amtliche Geo-Basisinformation</td>
<td>Kommunales Bodenmanagement und Landentwicklung</td>
</tr>
<tr>
<td></td>
<td>V 3 Ü 2</td>
<td>V 2 Ü 3</td>
<td>V 2 Ü 1</td>
<td>V 2 Ü 3</td>
</tr>
<tr>
<td>5. Semester</td>
<td>Geodätische Referenzsysteme</td>
<td>Datenbanken und Internet</td>
<td>Vermessung 4</td>
<td>Vermessung 5</td>
</tr>
<tr>
<td></td>
<td>V 4 Ü 1</td>
<td>V 2 Ü 3</td>
<td>V 2 Ü 3</td>
<td>V 1 Ü 2</td>
</tr>
</tbody>
</table>
| 6. Semester | Praxisprojekt (18 ECTS–Anrechnungspunkte; 16 Wochen) | Bachelor-Thesis (12 ECTS–Anrechnungspunkte; 10 Wochen)

V i = i SWS Vorlesung Ü i = i SWS Übungen = Pflichtmodule, sind in jedem Fall von allen zu belegen
graue Felder = Wahlpflichtmodule; eins von den beiden Modulen ist zu wählen

Modul Mathematik 1

Verantwortlicher
Prof. Dr. M. Schlüter

Dozenten
Prof. Dr. K.-A. Klinge, Prof. Dr. M. Schlüter, Prof. Dr. J. Zaiser

Modulziele
Die Studierenden können grundlegende Methoden der Analysis auf Problemstellungen aus dem Bereich Geoinformatik und Vermessung anwenden, können einfache technische Problemstellungen aus dem Bereich Geoinformatik und Vermessung in mathematische Modelle überführen und effizient mit Computerunterstützung lösen.

Modulvoraussetzungen
Keine

Modulinhalte
- Messwertfolgen, Interpolation und Approximation
- Funktionen einer Variablen
- Differentialrechnung von Funktionen einer Variablen
- Anwendungen der Differentialrechnung von Funktionen einer Variablen (Kurvendiskussion, numerische Verfahren zur Lösung von Gleichungen, Reihenentwicklungen nach Taylor, Extremwertaufgaben)
- Die Umsetzung der Lösungskonzepte mit numerischen Strategien (integrierte PC-Nutzung)

Lehrmethoden
Vorlesung 60%
Übung zum Teil an PC-Arbeitsplätzen 40%

Leistungsnachweise
Klausur oder mündliche Prüfung
Präsentation und Abgabe von Hausaufgaben

ECTS Credits
6

SWS
5

Workload
180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67%

Empfohlene Einordnung
1. Studiensemester

Medienformen

Literatur
- Stöcker: Taschenbuch mathematischer Formeln und moderner Verfahren, Harri Deutsch, 2007
einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand
<table>
<thead>
<tr>
<th>Modul</th>
<th>Mathematik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulziele</td>
<td>Berechnung und Anwendungen der</td>
</tr>
<tr>
<td></td>
<td>• Lösung von linearen Gleichungssystemen durch Algorithmen, mit Determinanten und mit Matrizen,</td>
</tr>
<tr>
<td></td>
<td>• Rechenregeln für Determinanten und Umformung von Determinanten,</td>
</tr>
<tr>
<td></td>
<td>• Rechenoperationen für Matrizen (Addition, Multiplikation, Transposition, Kroneckerprodukt und Inversion),</td>
</tr>
<tr>
<td></td>
<td>• speziellen quadratischen Matrizen,</td>
</tr>
<tr>
<td></td>
<td>• linearen Transformationen mit Matrizen</td>
</tr>
<tr>
<td></td>
<td>• Spur, des Rangs, der Kondition und Eigenwerte von Matrizen,</td>
</tr>
<tr>
<td></td>
<td>• Blockmatrizen,</td>
</tr>
<tr>
<td></td>
<td>• Vektorrechnung und der</td>
</tr>
<tr>
<td></td>
<td>• Integralrechnung, insbesondere der numerischen Integration.</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
<td>Mathematik 1 mindestens parallel</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme</td>
</tr>
<tr>
<td></td>
<td>• Determinanten, Regel von Sarrus, Laplace’scher Entwicklungssatz, Cramersche Regel, Umformung von Determinanten</td>
</tr>
<tr>
<td></td>
<td>• Rechenregeln für Matrizen, Spezielle Matrizen, Kehrmatrix, Lösung linearer Gleichungssysteme mit Hilfe von Matrizen, Lineare Transformationen, Orthogonale Matrizen, Rang, Norm und Kondition einer Matrix, Blockmatrizen</td>
</tr>
<tr>
<td></td>
<td>• Vektorrechnung, Darstellung von Vektoren, Skalar- und Vektorprodukt</td>
</tr>
<tr>
<td></td>
<td>• Integralrechnung für Funktionen einer Variablen, Grund- und Stamminmale, Elementare Integrationsregeln, Numerische Integration, Flächenberechnungen, Volumeninhalte, Bogenlängen und weitere Anwendungen</td>
</tr>
<tr>
<td>Lehrmethoden</td>
<td>Vorlesung 60%</td>
</tr>
<tr>
<td></td>
<td>Übung in kleinen Gruppen 40%</td>
</tr>
<tr>
<td>Leistungsnachweise</td>
<td>Klausur</td>
</tr>
<tr>
<td></td>
<td>Präsentation und Abgabe von Hausaufgaben</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>6</td>
</tr>
<tr>
<td>SWS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67%</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
<td>2. oder 1. Studiensemester</td>
</tr>
<tr>
<td>Medienformen</td>
<td>verbale interaktive Präsentation der Modulinhalte, Entwicklung des Lehrinhaltes am Overheadprojektor, Ausgabe von begleitendem Lehrmaterial, begleitete und selbstständige Bearbeitung von Übungsaufgaben, Einsatz einer eLearning-Plattform</td>
</tr>
<tr>
<td></td>
<td>• Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg, Band 1-3.</td>
</tr>
<tr>
<td></td>
<td>• Stöcker: Taschenbuch mathematischer Formeln und moderner Verfahren, Harri Deutsch, 2007</td>
</tr>
<tr>
<td>Modul</td>
<td>Ausgleichungsrechnung und Statistik</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. J. Zaiser</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. J. Zaiser, Prof. Dr. J. Klönowski</td>
</tr>
</tbody>
</table>
| Modulziele | • Die Studierenden werden in die grundlegende Methodik, Arbeitsweise und Möglichkeiten der Statistik und Ausgleichungsrechnung eingeführt.
 • Fähigkeit zur Erkennung, Anwendung und Berechnung von Korrelationen und Varianz-/Kovarianzfortpflanzung bei einfachen geodätischen Sachverhalten.
 • Kenntnis und Verständnis der Bestandteile, Wirkung, Möglichkeiten und Grenzen des Gauß-Markoff-Modells
 • Aufbau, Definition und Anwendung des Gauß-Markoff-Modells durch Ausgleichung von Höhennetzen, Lagenetzen und Transformationen sowie Berechnung linearer Regression.
 • Kenntnis, Anwendung und Interpretation unterschiedlicher Lagerung von Netzen (angeschlossenes Netz, freies Netz, Teilspur- und Gesamtspurminimierung)
 • Kenntnis, Durchführung und Interpretation von Zuverlässigkeitsanalysen und Data Snooping |
| Modulvoraussetzungen | • Mathematik 1
 • Mathematik 2 mindestens parallel
 • Geodätische Rechenmethoden
 • Grundkenntnisse in Programmen zur Lösung mathematisch-numerischer Problemstellungen (z.B. Excel) |
| Modulinhalte | • Abhängigkeit zwischen Beobachtungen, Kovarianzfortpflanzungsgesetz
 • Arten von Abweichungen, Methode der kleinsten Quadrate, Andere Zielfunktionen
 • Gauß-Markoff-Modell, funktionales und stochastisches Modell
 • Standardabweichungen und Korrelationen der Ausgleichungsergebnisse
 • Lineare Ausgleichungsaufgaben, insbesondere Höhennetze
 • Einführung in die Ausgleichung von Lagenetzen: Linearisierung von Verbeserungsgleichungen, Standard- und Konfidenzellipsen
 • Datumsproblem, Freies Höhennetz
 • ebene Transformationen
 • Zuverlässigkeit und Data Snooping
 • Einsatz von Programmen zur Lösung mathematisch-numerischer Problemstellungen |
| Lehrmethoden | Vorlesung 40%
 Übung in kleinen Gruppen an PC-Pool-Arbeitsplätzen 60% |
| Leistungsnachweise | Klausur
 Präsentation und Abgabe von Hausaufgaben |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%
 Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene Einordnung | 3. Studiensemester
 2. Studiensemester möglich |
<p>| Medienformen | verbale interaktive Präsentation der Modulinhalte, Entwicklung des Lehrinhaltes an Overheadprojektor und Tafel, Ausgabe von begleitendem Lehrmaterial, begleitete und selbstständige Bearbeitung von Übungsaufgaben an Computerarbeitsplätzen, Einsatz einer eLearning-Plattform |</p>
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel aus:</td>
</tr>
</tbody>
</table>
| Modulvoraussetzungen | Mathematik 1 und 2
| Ausgleichungsrechnung und Statistik |
| Modulinhalte | • Figur der Erde, Bezugsflächen der Geodäsie, geometrische Eigenschaften des Ellipsoides, sphärische Dreiecksberechnungen
| | • Himmelsfeste und erdfeste Koordinatensysteme, Beziehungen zueinander, Erdmessung (Raumverfahren der Geodäsie)
| | • Ellipsoidische Koordinaten, Konforme Koordinaten, Kartesische Koordinaten, Umformungen und geodätische Berechnungen, Hauptaufgaben in UTM- und in Gauß-Krüger Koordinaten
| | • Transformationen bei unterschiedlichen geodätischen Grundlagen
| | • Ausgleichung von GPS-Netzen
| | • Zeitsysteme, Geodätisch-astronomische Ortsbestimmung
| | • Lagemessung / Geodätisches Datum
| | • Schweremessung
| | • Höhenmessung / Geodätisches Datum |
| Lehrgang | Vorlesung 80%, Übung 20%; die Übungen beinhalten Berechnung in GNU Octave oder Excel und werden allein oder in Arbeitsgruppen umgesetzt. Sie sind mit schriftlichen Ausarbeitungen abzugeben bei denen auch der Aufbau und die Fachsprache geprüft und korrigiert werden.
| Leistungsnachweise | Vorlesungsbegleitende Übungen
| | Vorlesungsbegleitende Übungen mit Ausarbeitungen (unbenotet)
| | Klausur (mit theoretischem und Berechnungsteil im PC-Pool) oder mündliche Prüfung (wird zu Begin der Vorlesung bekannt gegeben)
| ECTS Credits | 6
<p>| Workload | 180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene Studiensemester | 4. Studiensemester, 5. Studiensemester möglich |</p>
<table>
<thead>
<tr>
<th>Einordnung</th>
<th>Medienformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Skript mit Folien(Beamer), Tafel, PC-Pool, Einsatz einer eLearning-Plattform</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Ausgewählte Kapitel aus:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bernhard Heck: Rechenverfahren und Auswertemodelle der Landesvermessung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Albert Schödlbauer: Rechenformeln und Rechenbeispiele zur Landesvermessung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wolfgang Torge: Geodäsie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Walter Großmann: Geodätische Rechnungen und Abbildungen in der Landesvermessung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rudolf Sigl: Sphärische Trigonometrie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hofmann-Wellenhof et al.: GPS in der Praxis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hofmann-Wellenhof et al.: GPS – Theory and Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literaturliste und Linklisten der www-Angebote auf dem jeweils aktuellen Stand</td>
<td></td>
</tr>
<tr>
<td>Modul</td>
<td>Geodätische Rechenmethoden</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. Th. Leonhard</td>
<td></td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. Th. Leonhard, Prof. Dr. J. Klonowski, Prof. Dr. J. Zaiser</td>
<td></td>
</tr>
</tbody>
</table>
| **Modulziele** | Die Studierenden sind in der Lage
 • Geodätische Koordinaten zu verstehen, mit Koordinatensystemen umzugehen und die geodätischen Hauptaufgaben zu erkennen und zu lösen (in zweidimensionalen ebenen Systemen)
 • Streckenreduktionen für die Gauß-Krüger- und für die UTM-Abbildung zu berechnen
 • Koordinaten von Lagepunkten bei unterschiedlichen Messsituationen (Messlinien, trigonometrische Bestimmungen) zu berechnen
 • Flächen aus Maßzahlen und aus Koordinaten zu berechnen
 • Flächen bei Vorgabe verschiedener Restriktionen rechnerisch zu teilen sowie Flurstücks grenzen zu begradigen
 • Exzentrische Beobachtungen auf ein Zentrum umzurechnen
 • Unterschiedlichste Messreihen statistisch auszuwerten
 • die Fortpflanzung von Varianzen und Kovarianzen zu berechnen |
| **Modulvoraussetzung** | Stoff der Mathematik bis zum 12. Schuljahr |
| **Modulinhalte** | • Definition der Geodäsie; Erdmessung, Landes- und Detailvermessung
 • Geodätische Koordinatensysteme
 • Messen, Maßeinheiten, Maßverhältnisse
 • ebene Trigonometrie
 • Richtungswinkel und Strecke, Polarpunktberechnung
 • Kleinpunktberechnung, Koordinatentransformation (eindeutig)
 • Geradenschnitt, Flächenbestimmung (rechnerisch, graphisch)
 • Flächenteilung und Grenzausgleich
 • Trigonometrische Punktbestimmung (Bogen-, Vorwärts-, Seitwärts-Rückwärtschnitt, Doppelpunktbestimmung)
 • Zentrierungen, gebrochener Strahl
 • Arten von Abweichungen, Normalverteilung und Kenngrößen
 • Standardabweichungen für Beobachtungen gleicher und unterschiedlicher Genauigkeit, Doppelbeobachtungen, Varianzfortpflanzung
 • t-Test, χ^2-Test |
| **Lehrmethoden** | Vorlesung 60%
 Übung 40%; die Übungen werden vorlesungsbegleitend ausgegeben, sind innerhalb einer Woche zu bearbeiten und werden innerhalb einer weiteren Woche korrigiert mit Erläuterungen zurückgegeben. |
| **Leistungsnachweise** | Vorlesungsbegleitende Übungen (unbenotet)
 Klausur oder mündliche Prüfung (wird zu Begin der Vorlesung bekannt gegeben) |
| **ECTS Credits** | 6 |
| **SWS** | 5 |
| **Workload** | 180 Stunden; Vorlesungen und Übungen mit Ausarbeitung 33%
 Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 1. Studiensemester |
| **Medienformen** | Folien (Overhead-/ Beamer), Tafel, Einsatz einer eLearning-Plattform |
| **Literatur** | Ausgewählte Kapitel aus:
 • Gruber, Franz Josef; Joeckel, Rainer: Formelsammlung für das Vermessungswesen |
- Kahmen, Heribert: Vermessungskunde
- Matthews, Volker: Vermessungskunde
- Witte, Bertold; Schmidt, Hubert: Vermessungskunde und Grundlagen der Statistik für das Bauwesen
<table>
<thead>
<tr>
<th>Modul</th>
<th>Grundlagen der Sensorik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. M. Schlüter</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. M. Schlüter, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| **Modulziele** | Die Studierenden
 • können optische Komponenten zur Lösung technischer Aufgabenstellungen auswählen, zusammenstellen, in ihrer Gesamtwirkung kalkulieren, bewerten und einsetzen,
 • können zur Lösung messtechnischer Aufgabenstellungen geeignete Sensoren, Messgeräte und Zubehör identifizieren und bewerten. |
| **Modulvoraussetzungen** | Mathematik 1 mindestens als Parallelveranstaltung empfohlen
Informatik mindestens als Parallelveranstaltung empfohlen |
| **Modulinhalte** | Modellierung periodischer Bewegungsabläufe (Schwingungen, Wellen, harmonische Analyse)
Elektromagnetisches Spektrum und Eigenschaften elektromagnetischer Wellen, technische Anwendungen (Lichtgeschwindigkeit, Reflexion, Brechung, Dispersion, Beugung, Polarisation; Spiegel und Prismen, IR-Fotografie, Farbtransformationen, Laser, Interferometrie, Radar)
Geometrische Optik (Linsen, optische Systeme, Abbildungsfehler, optische Vergütung)
Elektrooptische Sensoren
Elektrische Energieversorgung für mobile Anwendungen |
| **Lehrmethoden** | Vorlesung 60%
Übung 40% zum Teil an PC- und Labor-Arbeitsplätzen |
| **Leistungsnachweise** | Klausur oder mündliche Prüfung
Übungsaufgaben |
| **ECTS Credits** | 6 |
| **SWS** | 5 |
| **Workload** | 180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 1. Studiensemester
2. Studiensemester möglich |
einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand |
<table>
<thead>
<tr>
<th>Modul</th>
<th>Computer Aided Design (CAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. J. Zaiser</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. J. Zaiser, Prof. Dr. J. Klonowski</td>
</tr>
</tbody>
</table>
| Modulziele | • Übersicht über und Einsatz von CAD- und GIS-Programmen in Geoinformatik und Vermessung
• Kenntnisse von Zeichenvorschriften und Einsatz von Artenkatalogen
• Lernen und Beherrschen der Werkzeuge von Zeichen- (GEOgraf) und Rechenprogrammen (KIVID)
• Lösung von Aufgaben aus der Praxis der Geoinformatik und Vermessung, wie
 ⋅ Auswertung von Einbinde-, Orthogonal- und Polarverfahren mit GEOgraf und KIVID,
 ⋅ Auswertung einer Gebäudeaufnahme mit GEOgraf,
 ⋅ Zeichnerische Bearbeitung einer Baulandumlegung mit GEOgraf,
 ⋅ Fertigung eines Lageplans zum Bauantrag mit GEOgraf,
 ⋅ Import und Export von Grafikdaten mit GEOgraf,
 ⋅ Einpassung von Rastergrafiken (z.B. Google-Earth) in GEOgraf,
 ⋅ Datenübernahme aus Plänen in lokalen Koordinaten in GEOgraf,
 ⋅ On Screen Digitalisieren mit GEOgraf,
 ⋅ Änderungen in den Arten- und Symboldateien von GEOgraf,
 ⋅ Schnitt-, Kreis- und Flächenberechnungen mit KIVID,
 ⋅ Programmkopplung von GEOgraf und KIVID mit Berechnung einer Flurstückszerlegung und
 ⋅ Import von Messdaten verschiedener Formate in KIVID. |
| Modulvoraussetzungen | PC Grundkenntnisse |
| Modulinhalte GEOgraf: | • Übersicht über und Einsatz von CAD- und GIS – Programmen
• Einführung in GEOgraf, Ebenen, Arten, Projektdateien, Artenkataloge, Projektverwaltung, Grafikbildschirm, Zoomfunktion, Ansichten
• Punkte, Linien und Texte erzeugen, ändern und löschen
• Plotboxen und Blätter erzeugen, ändern und löschen
• Auftrags-, Grafik- und Rechenparameter verändern
• Plotansicht, Ebenenansicht und Ebenenmanager
• Schraffuren, Flächenfärbungen und Bandierungen
• Pläne und Karten mit dem Plotmanager gestalten
• Gebäudekonstruktion, Flächenteilung, Böschungskonstruktion, Kreisbögen
• Punkte, Linien und Flächen beschriften und bemaßen
• Koordinatendeateien eingeben, einlesen und ausgeben
• Geodätische Berechnungen mit GEOgraf
• Datenaustausch zwischen GEOgraf – Projekten (out-Format) und mit anderen CAD – Programmen (dxf / dwg)
• Datenübernahme aus ALK, analogen (Digitalisieren) und digitalen Plänen
• Eigene Punkt-, Linien-, Textarten Farben und Symbole erzeugen |
| KIVID: | • Allgemeiner Umgang mit KIVID (Projekte, Rechenstapel, usw.)
• Benutzung der linearen Rechenverfahren in KIVID (Orthogonalverfahren, Berechnung von Linienelementen, Einrechnen von Punkten in Geraden, Pythagorasproben, usw.)
• Koordinatentransformationen zwischen Lagestatus
• Schnittberechnungen |
Lehrmethoden

- Messdatenübernahme und Auswertung polarer Messungen (resp. Polygonzüge mit Polaraufnahmen) mit anschließender Erstellung von Lageplänen in GEOgraf (Online-Anbindung)

Leistungsnachweise

- Übung in kleinen Gruppen (100%) an PC-Pool-Arbeitsplätzen.
- Klausur
- Präsentation und Abgabe von Hausaufgaben
- Anwesenheit bei 80% der Lehrveranstaltungen

ECTS Credits

- 6

SWS

- 5

Workload

- 180 Stunden; Übungen 33%
- Vor- und Nachbereitung sowie Klausurvorbereitung 67%

Empfohlene Einordnung

- 1. Studiensemester
- 2. Studiensemester möglich

Medienformen

- Demonstration der Modulinhalt per Videobeamer, begleitete und selbstständige Bearbeitung von Übungsaufgaben an Computerarbeitsplätzen und über das pädagogische Netz in den PC-Pools, Ausgabe von begleitendem Lehrmaterial, Einsatz einer eLearning-Plattform

Literatur

- Dokumentationen der Softwarepakete GEOgraf und KIVID
<table>
<thead>
<tr>
<th>Modul</th>
<th>Einführung in die Geoinformatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. K.-C. Bruhn</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K.-C. Bruhn, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| **Modulziele** | • Kenntnis der Anwendungsgebiete der Geoinformatik
• Überblick über GIS-Software
• Verständnis und Fähigkeit zur Modellierung von Geodaten
• Kenntnis und Verständnis von Geodatenformaten
• Kenntnis von dateibasierter und zentraler Haltung von Geodaten sowie deren Vor- und Nachteile
• Kenntnis und Fähigkeit zur Erfassung und Verarbeitung von Geodaten
• Kenntnis und Fähigkeit zur Durchführung von geometrischen, thematischen und topologischen Analysen von Vektordaten
• Grundkenntnisse in geostatistischen Interpolationsverfahren und Fähigkeit zur Analyse von Digitalen Geländemodellen
• Fähigkeit selbstständig erarbeitete GIS-Projekte zu präsentieren
• Kenntnisse in amtlicher Geodatenhaltung (GDI)
• Kenntnisse zu WebGIS und Webdienste |
| **Modulvoraussetzungen** | Keine |
| **Modulinhalte** | • Kompter Umgang mit einer GIS-Software
• Grundlagen und Anwendungen von Geoinformation, Geodaten, Geoinformatik und Geoinformationssystemen (GIS)
• Geoobjekte und ihre Modellierung (Geometrie / Topologie / Thematik und Dynamik., Rasterdatenmodelle)
• Geodaten, deren Beschreibung (Metadaten) und Erfassung
• Räumliche Bezugsysteme in GIS (ESRI, EPSG)
• Geodatenformate und Geodatenbanken
• Geodateninfrastrukturen (GDI)
• Analysemethoden /-funktionen (Topologische / Geometrisch / Thematisch)
• Digitale Geländemodule (DGM), 2.5-3D GIS, DGM-Analysen
• Normen, Standards und Interoperabilität (ISO, OpenGIS Consortium) |
| **Lehrmethoden** | Vorlesung 60%
Übung in kleinen Gruppen 40%
| **Leistungsnachweise** | Klausur
Übungsaufgaben |
| **ECTS Credits** | 6 |
| **SWS** | 5 |
| **Workload** | 180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 2. Studiensemester
1. oder 3. Studiensemester möglich |
| **Medienformen** | Skript mit Folien (Overhead- / Beamer), Tafel, Übungen am Rechner, Einsatz einer eLearning-Plattform |
| **Literatur** | Lehrbücher:
• Wolfgang Liebig, R.-D. Mummenthey: ArcGIS-ArcView 9 Band 1: ArcGIS-Grundlagen, 2005 |
<table>
<thead>
<tr>
<th>Buch</th>
<th>Autor</th>
<th>Titel</th>
<th>Ausgabe</th>
<th>Verlag</th>
</tr>
</thead>
</table>

Linklisten der www-Angebote auf dem jeweils aktuellen Stand.
Lehreinheit Geoinformatik und Vermessung

<table>
<thead>
<tr>
<th>Modul</th>
<th>Kartografie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. F. Kern</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. F. Kern, Prof. Dr. K.-A. Klinge</td>
</tr>
<tr>
<td>Modulziele</td>
<td>Die Studierenden beherrschen die Entwurfsprinzipien topographischer und thematischer Karten und können diese praktisch mit Hilfe eines führenden Softwareprodukts anwenden, um eigene Karten, kartenverwandte Darstellungen oder 3D-Modelle auf Grundlage digitaler Geodaten zu erstellen.</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
<td>Geodätische Rechenmethoden (Grundzüge der Deskriptiven Statistik, ellipsoidische Koordinaten, UTM- und Gauß-Krüger-Koordinaten, Höhensysteme), Mathematik 1 (Differentialrechnung), Mathematik 2 (Vektorrechnung), Einführung in die Geoinformatik (Geoobjekte, Geometrische Primitive, Topologie, Semantik) Ausgleichsrechnung und Statistik () Geodätische Referenzsysteme (ellipsoidische Koordinaten, UTM- und Gauß-Krüger-Koordinaten, Höhensysteme)</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Vorlesungspezifisch:</td>
</tr>
<tr>
<td></td>
<td>• Kartennetzentwurfslehre: Grundlagen, Verzerrungseigenschaften und Klassifizierung von Kartenprojektionen, kartographische und geodätische Abbildungen, Kartometrie</td>
</tr>
<tr>
<td></td>
<td>• Formale und inhaltliche Bestandteile von Karten</td>
</tr>
<tr>
<td></td>
<td>• Kartografische Gestaltung: Aufgabe & Kommunikationsprozess, visuelle Wahrnehmung, kartografische Gestaltungsmittel, Layout & Design, Signaturen, Kartenschrift, Geländedarstellung</td>
</tr>
<tr>
<td></td>
<td>• Prinzipien und Verfahren der kartographischen Generalisierung</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Computergraphik, 3D-Stadamodelle, virtuelle Globen/Geobrowser</td>
</tr>
<tr>
<td></td>
<td>• Infographik und Thematische Kartografie, Datenaufbereitung und Analyse</td>
</tr>
<tr>
<td>Übungsspezifisch:</td>
<td>Bedienen von Computerprogrammen unter Anleitung</td>
</tr>
<tr>
<td></td>
<td>• Selbstoprganisation und Teambildung in kleinen Gruppen (Teamfähigkeit)</td>
</tr>
<tr>
<td></td>
<td>• Diskussion alternativer Präsentationsformen kartographischer Produkte</td>
</tr>
<tr>
<td></td>
<td>• Dokumentation und Präsentation der Ergebniskarten</td>
</tr>
<tr>
<td>Lehrmethoden</td>
<td>Seminaristische Vorlesung 67%</td>
</tr>
<tr>
<td></td>
<td>Einzelübungen und Übungen in kleinen Gruppen 33%</td>
</tr>
<tr>
<td>Leistungsnachweise</td>
<td>Prüfungsleistung: Klausur (120 Minuten)</td>
</tr>
<tr>
<td></td>
<td>Studienleistung: Bearbeitung der Übungsaufgaben und häusliche Ausarbeitungen in Grafik, Wort und Schrift</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>6</td>
</tr>
<tr>
<td>SWS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>180 Stunden; Vorlesungen und Übungen 33% Vor- und Nachbereitung sowie Klausurvorbereitung 67%</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
<td>3. Studiensemester 2. oder 4. Studiensemester möglich</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Skript mit Folien (Beamer), Tafel, Übungen am Rechner, weitergehende Materia-</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Kapitel aus:</td>
<td></td>
</tr>
<tr>
<td>• Hake, G., Grünreich, D., Meng, L.: Kartographie. 8. vollst. neu bearb. und erw. Aufl. Walter de Gruyter, 2002</td>
<td></td>
</tr>
<tr>
<td>• Krygier, J., Wood D.: Making Maps. the guildford press, New York, 2005</td>
<td></td>
</tr>
<tr>
<td>• Flacke & Kraus: Koordinatensysteme in ArcGIS</td>
<td></td>
</tr>
</tbody>
</table>
Modul Digitale Bildverarbeitung

<table>
<thead>
<tr>
<th>Verantwortlicher</th>
<th>Prof. Dr. F. Kern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. F. Kern, Prof. Dr. M. Schlüter</td>
</tr>
</tbody>
</table>

Modulziele
Die Studierenden sind in der Lage
- das Nutzungspotenzial von thematischen Rasterdaten und digitalen Bilddaten von Fernerkundungssensoren einzuschätzen
- Struktur und Inhalt von Raster-/Bilddaten zu bewerten
- mit der Geometrie von Raster-/Bilddatensätzen umzugehen
- Raster-/Bilddaten geeignet zu manipulieren
- aus mehreren Verarbeitungsvarianten die sinnvollste auszuwählen
- die komplette Prozesskette von der Erfassung über die Verarbeitung bis zur Wiedergabe zu beherrschen

Modulvoraussetzungen
- Informatik (Zahlensysteme, boolesche Logik, elementare Datentypen, mehrdimensionale Felder, Dateimanagement)
- Grundlagen der Sensorik (Schwingungen und Wellen, elektromagnetische Strahlung, harmonische Analyse, Optik) mindestens parallel dazu

Modulinhalte
- Radiometrische und geometrische Merkmale von Bilddaten
- Datengewinnung: Digitalkameras, Erdbeobachtungssysteme
- Datenformate für Rasterdaten und Digitalbilder
- Bildverbesserung: radiometrisch und geometrisch
- Filtermethoden im Ortsbereich
- Operationen im Ortsfrequenzbereich
- Informationsgewinnung aus Bildern durch Segmentierung und multispektrale Klassifizierung
- Georeferenzierung, Resampling, Resolution Merge
- Aufbereitung, Verarbeitung und Analyse von thematischen Rasterdaten
- Texturanalyse und Merkmalsextraktion

Lehrmethoden
- Vorlesung 50%: seminaristische Vorlesungsform, unterstützt durch Projektion grafisch aufbereiteter Inhalte. Unterlagen in Form eines Umdrucks und ergänzende Materialien, Informationen und Links über die eLearning-Plattform.

Leistungsnachweis
- Kurs

ECTS Credits
- 6

SWS
- 5

Workload
180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67%

Empfohlene Einordnung
- 4. Studiensemester
- 3. oder 5. Studiensemester möglich

Medienformen
- Verbale interaktive Folien-Präsentation der Modulinhalte (Beamer), Tafel, Vorführungen von Beispielen und Begleitung der Übungen am Computer (ERDAS Imagine), weitergehende Materialien, Informationen und Links über eLearning-Plattform

Literatur
- Albertz, J.; Wiggenhagen, M.: Taschenbuch zur Photogrammetrie und Fern-
<table>
<thead>
<tr>
<th>Autorin/Autor</th>
<th>Titel</th>
<th>Verlag</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bähr, H.-P.; Vögtle Th.</td>
<td>Digitale Bildverarbeitung</td>
<td>Heidelberg, Wichmann Verlag</td>
<td>2005</td>
</tr>
<tr>
<td>Steinbrecher, R.</td>
<td>Bildverarbeitung in der Praxis</td>
<td>R. Oldenbourg Verlag</td>
<td>1993</td>
</tr>
</tbody>
</table>

Kostenlose PDFs unter: http://www.rst-software.de/dbv/download.html

Internet:
- Tutorial Einführung in Fernerkundung und digitale Bildverarbeitung: www.sbg.ac.at/geo/student/fernerkundung/
<table>
<thead>
<tr>
<th>Modul</th>
<th>Anwendungsbezogene Software-Entwicklung (Wahlpflicht)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. F. Boochs, Prof. Dr. F. Kern</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. F. Boochs, Prof. Dr. F. Kern</td>
</tr>
</tbody>
</table>
| Modulziele | • Fähigkeit, Programme mit graphischer Benutzungsoberfläche in Sprachen aus dem .Net-Umfeld entwickeln zu können
• Fähigkeit, für vermessungstechnische Fragestellung, Berechnungen und numerische Auswertungen interaktiv zu bedienende Programme zu konzipieren und lauffähige Anwendungen daraus zu entwickeln
• Fähigkeit, graphische Benutzungsoberflächen gemäß dem Windows-„Style guide“ in Visual Basic zu entwickeln
• Fähigkeit, programmtechnische Verbindungen zu weiteren Applikationsprogrammen (GIS und Vermessung) herzustellen |
| Modulvoraussetzungen | • Informatik
• Objektorientierte Programmierung |
| Modulinhalte | • Grundlagen der C# bzw. VB.Net Softwareentwicklung im Net Framework
• Entwicklung einfacher Anwendungen in VB.Net bzw. C#
• Aufbau wichtiger unterstützender Klassen und Schnittstellen aus dem .Net Framework
• Mensch-Maschine Interaktion über graphische Elemente
• Konzepte der Programmsteuerung über Benutzerinterfaces
• Anbindung zu anderen Anwendungen, insbesondere Excel und Access.
• Entwicklung komplexer Anwendungen, die zur Lösung anwendungsbezogener Fragestellungen dienen |
| Lehrmethoden | Seminaristische Vorlesung 40%
Übung in kleinen Gruppen 60%
| Leistungsnachweise | Vorlesungsbegleitende Übungen mit Ausarbeitungen (unbenotet)
Klausur (mit Fragen zur Theorie und praktischen Programmierung) oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben) |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene Einordnung | 5. Studiensemester, 4. Studiensemester möglich |
| Medienformen | Skript mit Folien (Overhead- / Beamer), Tafel, Übungen am Rechner, Einsatz einer eLearning-Plattform |
| Literatur | einschlägige Lehrbücher
• Michael Kofler, Visual Basic 2005, Addison Wesley
• Microsoft Visual Basic .NET 2003 für Windows, Herdtverlag
• Einstieg in Visual Basic 2008 von Thomas Theis , Galileo Computing (http://openbook.galileocomputing.de/einstieg_vb_2008/)
• Linklisten der www-Angebote auf dem jeweils aktuellen Stand
• Skript zum Download
Einstieg in VB.NET von René Martin |
<table>
<thead>
<tr>
<th>Modul</th>
<th>Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. K.-C. Bruhn, Prof. Dr. K.-A. Klinge</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K.-C. Bruhn, Prof. Dr. K. Böhm, Prof. Dr. M. Schlüter, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| **Modulziele** | • Einführung in Fragen, Methoden und Techniken der Datenverarbeitung
• Grundsätze der Programmierung (Sequenzen, Verzweigungen, Schleifen und Unterprogramme)
• Erstellung einfacher Programme mit einer Objektorientierten Programmiersprache.
• Umgang mit einer integrierten Entwicklungsumgebung (IDE - Integrated Development Environment)
• Anwendung von Excel™ als rechentechnisches Hilfsmittel für vermessungstechnische Berechnungen und Statistik
• Anwendung von Excel™ und VBA als rechentechnische Hilfsmittel für vermessungstechnische Berechnungen und Numerik |
| **Modulvoraussetzungen** | Keine |
| **Modulinhalte** | • Lösung exemplarischer Aufgabenstellungen mit der Tabellenkalkulation
• Nutzung spezifischer Excelfeatures (Import, Export, einfache Datenbankfunktionalität) für fachspezifische Aufgabenstellungen
• Umsetzung von Algorithmen mit Excel und VBA
• Zahlensysteme und boolesche Logik
• Erstellen, Kompilieren und Ausführen von Programmen mit einer integrierten Entwicklungsumgebung
• Elementare Datentypen
• Programmierkonstrukte: Verzweigungen, Schleifen
• Felder, eindimensional und mehrdimensional
• Strukturierungskonstrukte: Methoden
• Grundlagen der Objektorientierung: Klassen und Objekte |
| **Lehrmethoden** | Seminaristische Vorlesung 20%
Übung in kleinen Gruppen 80%
Die Übungen beinhalten die Konzeption und Realisierung anwendungsbezogener Exceltabellen sowie einfacher Programme in einer objektorientierten Sprache. |
| **Leistungsnachweise** | Klausur
Übungsaufgaben |
| **ECTS Credits** | 6 |
| **SWS** | 5 |
| **Workload** | 180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 1. Studiensemester
2. Studiensemester möglich |
| **Medienformen** | Skript mit Folien (Overhead- / Beamer), Tafel, Übungen am Rechner, Einsatz einer eLearning-Plattform |
| **Literatur** | H. Balzert, Java 5: Der Einstieg in die Programmierung - Strukturiert und prozedural programmieren, 2005
Linklisten der www-Angebote auf dem jeweils aktuellen Stand, Skripte und Vorlesungsfolien zum Download |
<table>
<thead>
<tr>
<th>Modul</th>
<th>Objektorientierte Programmierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. K. Böhm</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K. Böhm, Prof. Dr. K.-C. Bruhn, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| Modulziele | • Vertiefung der im Modul Informatik gelegten Grundlagen
• Verständnis des objektorientierten Modellierungs- und Programmierparadigmas.
• Fähigkeit zur Verwendung existierender Klassen und zur Entwicklung eigener Klassen
• Fähigkeit zur Entwicklung von Klassenhierarchien
• Fähigkeit zur Entwicklung komplexer Programmen unter Verwendung umfangreicher Klassenbibliotheken
• Erstellung von Programmen mit graphischen Benutzeroberflächen |
| Modulvoraussetzungen | Informatik |
| Modulinhalte | • Entwicklung von eigenen Klassen und Erstellung von Instanzen.
• Entwicklung von Klassenhierarchien auf Basis des Prinzips der Vererbung
• Vielgestaltigkeit von Methoden und Objekten (Polymorphie)
• Spezielle Eigenschaften der Programiersprache, z.B. Ausnahmenbehandlung, Parallel ablaufenden Teilprogramme
• Datenein- und -ausgabe (Lesen und Schreiben von Dateien)
• Entwicklung von graphischen Benutzungsoberflächen
• Ereignisverarbeitung bei graphischen Benutzungsoberflächen |
| Lehrmethoden | Vorlesung 40%
Übung in kleinen Gruppen 60%
Die Übungen beinhalten die Modellierung von Klassenhierarchien sowie die programmiertechnische Umsetzung in einer objektorientierten Sprache am Rechner. Die Programmierkonzepte liefern die Basis für die Erstellung von komplexeren Übungsaufgaben. |
| Leistungsnachweise | Klausur
Übungsaufgaben |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene Einordnung | 2. Studiensemester
3. Studiensemester möglich |
| Medienformen | Skript mit Folien (Overhead- / Beamer), Tafel, Übungen am Rechner, Einsatz einer eLearning-Plattform |
| Literatur | • Balzert, H., „Objektorientierte Programmierung mit Lava 5“, web – life long learning (w3l GmbH), 2009
• Ullenboom, C., “Java ist auch eine Insel“, Galileo Computing
• Galileo OpenBook, „Objektorientierte Programmierung“: http://openbook.galileocomputing.de/oop/
einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand, Skript zum Download |
Modul Datenbanken und Internet

Verantwortliche
Prof. Dr. K. Böhm, Prof. Dr. K.-C. Bruhn

Dozenten
Prof. Dr. K. Böhm, Prof. Dr. K.-C. Bruhn, Prof. Dr. K.-A. Klinge

Modulziele
Das Modul gliedert sich in die beiden Hauptbereiche „Datenbanken“ und „Internet“ mit dem Endziel der Konzeption und Realisierung dynamischer Web-Anwendungen mit Zugriff auf selbst modellierte und erstellte Datenbanken.

Teil Datenbanken:
- Die Studierenden lernen die Konzepte zur relationalen Modellierung und Verwaltung von Daten kennen; können eigene Datenbanken entwerfen und diese Entwürfe in relationalen Datenbanken abbilden, Daten einpflegen und diese Daten wieder abfragen. Hierzu werden sowohl Desktop-Datenbanken wie Access, als auch SQL-Datenbanken (SQLite, SpatiaLite und PostgreSQL/PostGIS) eingesetzt.
- Nutzung raumbezogener Datentypen und raumbezogener Operationen mittels SQL Spatial (OGC SFS für SQL)

Teil Internet:
- Einführung in das Internet und dessen Dienste
- Realisierung dynamischer Internet-Anwendungen mit serverseitiger als auch clientseitiger Programmierung mit Zugriff auf Datenbanken
- Verständnis und programmgesteuerte Anwendung von Internetbasierten Kartendiensten

Modulvoraussetzungen
Informatik

Modulinhalte
- SQL(DDL, DCL und DML)
- SQL Spatial (OGC SFS für SQL)
- Einführung in das Internet und dessen Dienste: E-Mail, FTP, News, www
- Erlernen von HTML und sowohl server- als auch clientseitiger Programmiersprachen zur Realisierung von Internet-Anwendungen
- Verknüpfung der Programme mit einer relationalen Datenbank zur Erstellung dynamischer Webseiten mit Zugriff auf rationale Datenbanken
- Nutzung von Internetbasierten Kartendiensten für die Darstellung der georeferenzierten Datenbankinhalte

Lehrmethoden
Vorlesung 67%
Übung in kleinen Gruppen 33%
Die Übungen beinhalten die Konzeption und Realisierung interaktiver dynamischer Internet-Anwendungen, sowie die Modellierung, Erstellung und Nutzung relationaler Datenbanken.

Leistungsnachweise
Klausur
Übungsaufgaben

ECTS Credits
6

SWS
5

Workload
180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67%

Empfohlene Einordnung
4. Studiensemester
5. Studiensemester möglich

Medienformen
Skript mit Folien (Overhead-/ Beamer), Tafel, Übungen am Rechner, Einsatz
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RRZN-Skripte: SQL, ACCESS für Entwickler; PHP; Dreamweaver</td>
</tr>
<tr>
<td>einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand, Skript zum Download</td>
</tr>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Verantwortlicher</td>
</tr>
<tr>
<td>Dozenten</td>
</tr>
</tbody>
</table>
| **Modulziele** | Die Studierenden
• kennen den Aufbau des deutschen Liegenschaftskatasters einschließlich seiner rechtlichen Grundlagen
• kennen den DV-technischen Aufbau der amtlichen Geobasisinformation in Deutschland
• kennen die DV-technischen Strukturen der Geoinformation bei ausgewählten Nutzern der amtlichen Geobasisinformation im öffentlichen und privaten Bereich |
| **Modulvoraussetzungen** | Einführung in die Geoinformatik |
| **Modulinhalte** |
• Liegenschaftskataster: Organisation und Aufgaben der Katastervermessung, geschichtliche Entwicklung, Bestandteile, Inhalte und Fortführung des Liegenschaftskatasters, Zahlennachweis (Rahmenriss), Nutzungsarten
• Rechtsgrundlagen: Kataster- und Abmarkungsgesetz, Landesgesetz über den Grenznachweis bei Neubauten und die Gebäudeeinmessung, Landesvermessungsgesetz, Berufsordnung der öffentlich bestellten Vermessungsingenieure, Verwaltungs- und Gerichtsverfahren
• Informationssysteme der öffentlichen Verwaltung: AFIS, ALKIS, ATKIS
• Kommunale Informationssysteme: Planung, Umwelt
• Technische Betriebs-Informationssysteme: Ver- und Entsorgung |
| **Lehrmethoden** | Vorlesung 80%, Übung 20% |
| **Leistungsnachweise** | Klausur oder mündliche Prüfung
Laborübungen aus dem Bereich der amtlichen Geobasisdaten und kommunaler Anwendungen |
| **ECTS Credits** | 6 |
| **SWS** | 5 |
| **Workload** | 180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 5. Studiensemester
4. Studiensemester möglich |
| **Medienformen** | Skript mit Folien (Beamer), Tafel, Übungen am Rechner, Einsatz einer eLearning-Plattform |
| **Literatur** |
• Landesgesetz über das amtliche Vermessungswesen (LGVerm) Rheinland-Pfalz
• Landesgesetz über das Liegenschaftskataster (Katastergesetz) in Rheinland-Pfalz
• Aktuelle Dokumente der GeoInfoDok http://www.adv-online.de zu AFIS, ALKIS, ATKIS
• Ralf Bill (Hrsg.): Kommunale Geo-Informationssysteme. Basiswissen, Praxisberichte und Trends, Heidelberg: Wichmann einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand, Skript zum Download |
<table>
<thead>
<tr>
<th>Modul</th>
<th>Vermessung 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. J. Klonowski</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. J. Klonowski</td>
</tr>
</tbody>
</table>
| Modulziele | • Fähigkeit Beobachtungsverfahren zu Lageaufnahme zu unterscheiden, deren Formelapparat abzuleiten und messtechnisch mit einfachem vermessungs-technischem Gerät (Orthogonalverfahren) selbstständig durchzuführen und auszuwerten
• Einschätzung des Genauigkeitspotenzials einfacher Messgeräte (optisches Lot, Schnurlot, Rechtwinkelprismen, Stahlmessbänder) sowie deren beeinflussende Faktoren
• Fähigkeit den Aufbau und die Arbeitsweise von Nivellierinstrumenten (analog und digital) nachzu vollziehen, erläutern und den Einfluss einzelner Bauteile auf die Genauigkeit der Messung einzuschätzen
• Messverfahren für präzise Nivellements zu definieren und die Vermeidung von Fehlereinflüssen auf die Messung durch ein Messverfahren zu begründen
• Fähigkeit geometrische Nivellements zu planen, durchzuführen und auszuwerten
• Fähigkeit Flächennivellements und Längs- und Querprofile zu planen, abzustecken, hohenmäßig aufzunehmen und auszuwerten sowie verschiedene Fragestellungen der Erdvolumenberechnung vorzunehmen
• Entwicklung von fachsprachlicher Kompetenz in den behandelten Themen und fachgerechte wissenschaftliche Dokumentation der Ergebnisse von Messungen |
| Modulvoraussetzung | Geodätische Rechenmethoden, mindestens parallel dazu |
| Modulinhalte | • Bezugsflächen für die Lage- und die Höhenmessung
• einfache Lagemessungen und Umgang mit dem vermessungstechnischen Gerät (Fluchtstab, Prisma, Messband)
• Rissführung und Aspekte der Lageaufnahme (Orthogonalverfahren, Einbindev erfahren, Polarverfahren und freie Stationierung, Messungsproben und Kontrollen)
• Aufbau und Arbeitsweise von Nivellierinstrumenten (Libellen-, Kompensator- und Digitalnivelliere)
• Prüfen und Berichten von Nivellierinstrumenten
• Höhenmessung auf Strecken, Schleifen, Linien, in Gebäuden, bei Längs- und Querprofilen, bei ebenen Flächen
• Fehlerbudget beim Nivellement und resultierende Messverfahren
• Erdvolumenberechnung und Erdvolumenausgleich |
| Lehrmethoden | Vorlesung 40%
Übung 60%; die messtechnischen Übungen beinhalten Berechnung per Taschenrechner, in Excel oder in KIVID und werden allein oder in Arbeitsgruppen umgesetzt. Sie sind mit schriftlichen Ausarbeitungen abzugeben, bei denen auch der Aufbau und die Fachsprache geprüft und korrigiert werden. |
| Leistungsnachweise | Vorlesungsbegleitende Übungen mit schriftlichen Ausarbeitungen (unbenotet)
Klausur oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben) |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
<p>| Empfohlene Einordnung | 1. Studiensemester; 2. Studiensemester möglich |
| Medienformen | Skript mit Folien (Overhead-/ Beamer), Tafel, Einsatz einer eLearning-Plattform, |</p>
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel aus:</td>
</tr>
<tr>
<td>• Witte / Schmitt: Vermessungskunde und Grundlagen der Statistik für das Bauwesen</td>
</tr>
<tr>
<td>• Baumann: Vermessungskunde Band 1 und 2</td>
</tr>
<tr>
<td>• Kahmen: Vermessungskunde</td>
</tr>
<tr>
<td>• Deumlich / Staiger: Instrumentenkunde</td>
</tr>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Verantwortlicher</td>
</tr>
<tr>
<td>Dozenten</td>
</tr>
<tr>
<td>Modulziele</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulvoraussetzung</td>
</tr>
<tr>
<td>Modulinhalte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrmethoden</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungsnachweise</td>
</tr>
<tr>
<td>ECTS Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Ausgewählte Kapitel aus:</td>
</tr>
<tr>
<td>• Witte / Schmitt: Vermessungskunde und Grundlagen der Statistik für das Bauwesen</td>
</tr>
<tr>
<td>• Baumann: Vermessungskunde Band 1 und 2</td>
</tr>
<tr>
<td>• Kahmen: Vermessungskunde</td>
</tr>
<tr>
<td>• Deumlich / Staiger: Instrumentenkunde</td>
</tr>
<tr>
<td>• Joeckel, Stober, Huep: Elektronische Entfernungs- und Richtungsmessung und ihre Integration in aktuelle Positionierungsverfahren</td>
</tr>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Verantwortlicher</td>
</tr>
<tr>
<td>Dozenten</td>
</tr>
<tr>
<td>Modulziele</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulvoraussetzung</td>
</tr>
<tr>
<td>Modulinhalte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrmethoden</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungsnachweise</td>
</tr>
<tr>
<td>ECTS Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Verantwortliche</td>
</tr>
<tr>
<td>Dozenten</td>
</tr>
<tr>
<td>Modulziele</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
</tr>
<tr>
<td>Modulinhalte</td>
</tr>
<tr>
<td>Lehrmethoden</td>
</tr>
<tr>
<td>Leistungsnachweise</td>
</tr>
<tr>
<td>ECTS Credits</td>
</tr>
<tr>
<td>SWS:</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Verantwortliche</td>
</tr>
<tr>
<td>Dozenten</td>
</tr>
</tbody>
</table>
| **Modulziele** | Die Studierenden sind in der Lage
- die unterschiedlichen Verwendungen künstlicher Erdsatelliten einzuteilen und zu beschreiben sowie die Beobachtungsgleichungen zu identifizieren und zu erläutern
- verschiedene Raumverfahren der Geodäsie zu beschreiben und deren Potenzial zur Erfassung geodynamischer Effekte einzuschätzen
- die einzelnen Satellitennavigationssysteme zu differenzieren sowie deren Gemeinsamkeiten und Unterschiede zu benennen und zu bewerten
- das Fehlerbudget eines GNSS qualitativ und quantitativ einzuschätzen
- Vor- und Nachteile verschiedener Beobachtungs- und Auswerteverfahren fachlich zu begründen und einzuschätzen
- das für die jeweilige Aufgabenstellung geeignete Messverfahren auszuwählen, die Messungen durchzuführen und auszuwerten
- DGNSS- und PDGNSS-Mess- und Auswerteverfahren im Echtzeit- und Post-Processing-Modus durchzuführen
- GNSS-Koordinaten in die verschiedenen Koordinatensysteme und Datumsfestlegungen mit marktgängiger Software einzurechnen. Hierbei können sie sowohl vorgegebene Transformationsparameter einsetzen als auch mess- und auswertetechnisch eigene Parameter bestimmen.
- aus den ellipsoidischen Höhen mittels Geoid- bzw. Qasigeoidundulationen Gebrauchshöhen rechnerisch zu bestimmen
- die Anbieter und die Unterschiede der angebotenen differenziellen Korrektursysteme (inkl. Netz-RTK) zu erläutern und zu beurteilen
- GPS-Messungen mit einer tachymetrischen Aufnahme direkt mess- und auswertetechnisch im Feld zu kombinieren
- die Problematik der Antennenphasenzentren einzuschätzen sowie die unterschiedlichen Kalibrierverfahren und die daraus zu erhaltenen Ergebnisse zu bewerten
- sich fachsprachlich in den behandelten Themen korrekt auszudrücken und die Ergebnisse von Messungen schriftlich fachwissenschaftlich zu dokumentieren / präsentieren |
| **Modulvoraussetzungen** |
- Geodäische Rechenmethoden
- Vermessung1-3
- Geodätische Referenzsysteme mindestens parallel dazu
- Ausgleichungsrechnung und Statistik mindestens parallel dazu |
| **Modulinhalte** |
- Satellitengeodäsie allgemein (künstliche Erdsatelliten als Hochziel, als Testkörper im Gravitationsfeld der Erde und als Träger von Sensoren
- Raumverfahren der Geodäsie (VLBI, SLR, LLR, GNSS)
- Satellitennavigationssysteme GPS, GLONASS, EGNOS, GALILEO – Systemkomponenten Raumsegment (Satelliten, Signale, Kodierung, BPSK- / BOC-Modulation, etc.) Kontrollsegment (inkl. Systemsicherungstechniken), Nutzersegment (Ein- und Mehrfrequenzempfänger, Codeabhängige und Codelose Empfänger)
- Fehlerbudget, Ionosphärenmodell, VTEC, Meteorologische Modelle
- Beobachtungsverfahren: Beobachtungsgrößen, statische, semi-kinematische und kinematische Verfahren
- Auswerteverfahren: Einzelpunktpositionierung, Differenzielles GNSS mit
Codes und Trägern (Differenzbildungen, Schätzung der Mehrdeutigkeiten, etc.)
- „Standardisierte“ Datenformate (RINEX, RTCM, NMEA) und Bedeutung
- Korrekturdaten und Korrekturdatendienste: Konzept, SAPOS, ASCOS, Star Fire, Trimble VRSnow, EGNOS, VRS, FKP, MAC, etc.
- Antennenphasenzentren, Antennenkalibrierung (Feldverfahren, Laborverfahren, Kalibrierergebnisse)

Lehrmethoden
Vorlesung 40%
Übung 60% die messtechnischen Übungen beinhalten Berechnung mit kommerzieller (Trimble, Leica) und semi-kommerzieller (Wanninger) Auswertesoftware und werden allein oder in Arbeitsgruppen umgesetzt. Sie sind mit schriftlichen Ausarbeitungen abzugeben bei denen auch der Aufbau und die Fachsprache geprüft und korrigiert werden.

Leistungsnachweis
Vorlesungsbegleitende Übungen mit schriftlichen Ausarbeitungen (unbenotet)
Klausur oder mündliche Prüfung (wird zu Begin der Vorlesung bekannt gegeben)

ECTS Credits
6

SWS
5

Workload
180 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung sowie Klausurvorbereitung 67%

Empfohlene Einordnung
5. Studiensemester

Medienformen
Skript mit Folien (Overhead-/Beamer), Tafel, Internet, Einsatz einer eLearning-Plattform, Feld- und Laborübungen

Literatur
Ausgewählte Kapitel aus:
- Seeber: Satellite Geodesy
- Bauer: Vermessung und Ortung mit Satelliten
- Hoffmann-Wellenhoff et al.: GPS Theory and Practice
- Hoffmann-Wellenhoff et al.: GNSS
- Groves: Principles of GNSS, Inertial and Multisensor integrated Navigation Systems
- DVW-Schriftenreihe Band 57 / 2009; GNSS 2009: Systeme, Dienste, Anwendungen
- SAPOS-Symposien
- Internet
<table>
<thead>
<tr>
<th>Modul</th>
<th>Ingenieurbau und Geologie (Wahlpflicht)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. Klonowski, Prof. Dr. Th. Leonhard</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. W. Albert, Prof. Dr. B. Plaßmann (beide Lehreinheit Bauingenieurwesen)</td>
</tr>
</tbody>
</table>

Lehrgebiet Wasserbau
Die Studierenden
- kennen die grundlegenden Begriffe und Parameter des Wasserkreislaufes, der Wasserwirtschaft und Wasserbau
- kennen die gängigen Verfahren zur Messung und Auswertung hydrologischer Daten
- haben Grundkenntnisse in der Gewässer- und Grundwasserhydraulik, um damit anstehende Vermessungsaufgaben in Hinblick auf Umfang und Genauigkeitsanforderungen praxisgerecht beurteilen und ausführen zu können.
- kennen die hydraulischen Systeme von Wasserversorgungsnetzen und Abwassersystemen und sind damit in der Lage, anstehende Vermessungsaufgaben an diesen Leitungen den Anforderungen entsprechend zu beurteilen und auszuführen

Lehrgebiet Straßenbau
Die Studierenden
- erwerben grundlegende Kenntnisse über die Planungsabläufe und die Entwurfsaufgaben bei der Projektierung von Straßen
- beherrschen die Interpretation von Straßentüfteln mit ihren Lage-, Höhen- und Querschnittsplänen aus vermessungstechnischer Sicht beherrschen entwurfsbezogene Berechnungen von Deckenhöhen über Gradienteneinrechnung, Krümmungs- und Rampenband für Absteckungsaufgaben

Lehrgebiet Geologie
Die Studierenden
- besitzen Grundkenntnisse der allgemeinen Geologie
- können die Geomorphologie eines Geländes aus kartografischer und topografischer Sicht beurteilen
- kennen Grundlagen der Ingenieurgeologie

Vorlesungsbegleitende Übungen
Die in den Vorlesungen der einzelnen Lehrgebiete erworbenen Kenntnisse und Fähigkeiten sind auf praxisnahe Fragestellungen selbständig anzuwenden sowie die zutreffenden Lösungen zu erarbeiten.

Modulvoraussetzungen
- Mathematik 1
- Mathematik 2 mindestens parallel dazu

Modulinhalte
Lehrgebiet Wasserbau
- Einführung in die Hydrologie (Wasserkreislauf, Wasserhaushalt, Niederschlag-Abfluss-Prozess, Messen und Analysieren der Wasserhaushaltsgrößen)
- Gewässerkundliche Begriffe und Kennwerte (Wasserstand, Abfluss, Pegelstationen)
- Abflussmessungen und -auswertung
- Gewässerausbau
- Grundwasserhydrologie
- Ver- und Entsorgungsleitungen, -systeme der Siedlungswasserwirtschaft

Lehrgebiet Straßenbau
- Planungsgrundsätze und -abläufe
- Entwurfsgrundlagen
- Planung der Trasse in Grundriss, Aufriss und Querschnitt

Lehrgebiet Geologie
- Methoden und Arbeitweisen der Geologie
- Aufbau der Erde
- Innere Dynamik, Endogene Prozesse
- Exogene Prozesse: Oberflächenprozesse und Landschaftsformen

Lehrmethoden
- Vorlesung 80%
- Übung 20%

Leistungsnachweis
- Planungs- und Berechnungsübungen als Studienleistung (unbenotet)
- Klausur (120 Minuten ohne Hilfsmittel) oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben)

ECTS Credits
- 6

SWS
- 5

Workload
- 180 Stunden (Annahme 16 Wochen / Semester)
- Präsenzzeit: Vorlesungen und Übungen
 - (5 SWS à 45 min) 60 Stunden ≈ 33%
 - Ausarbeitungen der Übungen
 - (3h / Übung) 48 Stunden ≈ 27%
 - Vor- und Nachbereitung sowie Prüfungsvorbereitung 72 Stunden ≈ 40%

Empfohlene Einordnung
- ab 4. Studiensemester (Wahlpflichtmodul)

Medienformen
- Skript mit Folien (Overhead- / Beamer), Tafel, Internet, Einsatz einer eLearning-Plattform

Literatur
- Wasserbau und Wasserwirtschaft
 - Lange / Lecher: Gewässerregelung, Gewässerpflage, Verlag Paul Parey Hamburg, 1993
 - Lattermann, E.: Wasserbau-Praxis, Band I+II, Bauwerk-Verlag Berlin 2010
 - Patt/Jürging/Kraus: Naturnaher Wasserbau, Springer Verlag, Berlin 2011
 - Taschenbuch der Wasserwirtschaft, Parey Buch-Verlag Berlin, 2003
 - Schröder/Euler/Schneider/Knauf, Grundlagen des Wasserbaus, Werner-Verlag Düsseldorf, 1999
 - Flussbau, Weiterbildendes Studium Wasser und Umwelt, Bauhaus-Universität Weimar, 2007

- Straßenbau
 - Forschungsgesellschaft für Straßen- und Verkehrswesen: RAST
 - Velske, S., Mentlein, H., Eymann, P.: Straßenbautechnik, Werner-Verlag, Düsseldorf, 1998

- Geologie:
<table>
<thead>
<tr>
<th>Modul</th>
<th>Photogrammetrische Datenerfassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. M. Schlüter</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. F. Boochs, Prof. Dr. M. Schlüter</td>
</tr>
</tbody>
</table>
| Modulziele | Die Studierenden sind in der Lage
| | • das Nutzungspotenzial von Messbildern einzuschätzen
| | • photogrammetrische Prozessketten zu kennen
| | • die Geometrie von Messbildern zu beherrschen
| | • charakteristische Merkmale von Messkameras zu kennen
| | • geeignetes Bildmaterial auszuwählen und zu beschaffen
| | • Messbilder geometrisch aufzubereiten
| | • aus Messbildern interaktiv Daten zu digitalisieren
| | • typische Geräte zur Betrachtung und Verarbeitung von Messbildern zu kennen
| | • auf dem Markt verfügbare Programmsysteme unterscheiden und auswählen zu können
| | • die Qualität photogrammetrisch erzielter Ergebnisse beurteilen zu können |
| Modulvoraussetzungen | Mathematik 1 mindestens als Parallelveranstaltung empfohlen
| | Informatik mindestens als Parallelveranstaltung empfohlen |
| Modulinhalte | • Zentralprojektion
| | • Orientierungen
| | • Kameratechnik
| | • Befliegung
| | • Geräte zur Betrachtung und –messung in Bildern
| | • Herstellung von Orthophotos
| | • Interaktive Datengewinnung in Orthophotos
| | • Bildmosaik |
| Lehrmethoden | Vorlesung 60%
| | Übung in kleinen Gruppen 40%
| Leistungsnachweise | Klausur
| | Übungsaufgaben |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%
| | Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene Einordnung | 4. Studiensemester
<p>| | 3. oder 5. Studiensemester möglich |
| | einschlägige Lehrbücher und Linklisten der www-Angebote auf dem jeweils aktuellen Stand |</p>
<table>
<thead>
<tr>
<th>Modul</th>
<th>Kommunales Bodenmanagement und Landentwicklung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. J. Klonowski, Prof. Dr. Th. Leonhard</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. D. Bohr, MR Prof. A. Lorig (beide Lehrbeauftragte)</td>
</tr>
<tr>
<td>Modulziele</td>
<td>Ortsplanung</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die Planarten und die Hierarchie der Planung in Deutschland</td>
</tr>
<tr>
<td></td>
<td>• kennen Inhalt und Zweck der vorbereitenden und verbindlichen Bauleitpläne</td>
</tr>
<tr>
<td></td>
<td>• wissen um die Besonderheit des vorhabenbezogenen Bebauungsplanes</td>
</tr>
<tr>
<td></td>
<td>• können die Belange des Umweltschutzes bei der Aufstellung der Bauleitpläne abwägen und Maßnahmen zum Ausgleich vorsehen</td>
</tr>
<tr>
<td></td>
<td>• kennen das Verfahren zur Aufstellung der Bauleitpläne (insbesondere die Beteiligung der Öffentlichkeit, der Behörden und sonstigen Träger öffentlicher Belange) und dessen Rechtskontrolle</td>
</tr>
<tr>
<td></td>
<td>• kennen die Möglichkeiten zur Sicherung der Bauleitplanung</td>
</tr>
<tr>
<td></td>
<td>• können die Zulässigkeit von Vorhaben im Geltungsbereich eines Bebauungsplanes oder innerhalb der im Zusammenhang bebauten Ortsteile beurteilen</td>
</tr>
<tr>
<td></td>
<td>• kennen die Gegenstände städtebaulicher Verträge und die dazu notwendigen Voraussetzungen</td>
</tr>
<tr>
<td></td>
<td>• unterscheiden die im BauGB verwendeten Erschließungsbegriffe</td>
</tr>
<tr>
<td></td>
<td>Bodenordnung</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• unterscheiden die private und hoheitliche Bodenordnung und kennen deren Anwendungsvoraussetzungen</td>
</tr>
<tr>
<td></td>
<td>• kennen Zweck und Anwendungsbereich der gesetzlichen Umlegung</td>
</tr>
<tr>
<td></td>
<td>• können den geeigneten Verteilungsmaßstab in der Umlegung bestimmen</td>
</tr>
<tr>
<td></td>
<td>• können Umlegungsmasse, Entwurfsmasse, Verteilungsmasse festlegen und daraus den Sollanspruch berechnen</td>
</tr>
<tr>
<td></td>
<td>• können zwischen Flächenbeitrag und Flächenabzug unterscheiden</td>
</tr>
<tr>
<td></td>
<td>• kennen die Grundstücksqualität der Einwurfs- und Zuteilungswerte und können deren Wertverhältnisse sowie den Umlegungsvorteil ableiten</td>
</tr>
<tr>
<td></td>
<td>• können anhand der Zuteilungs- und Abfindungsgrundsätze Vorschläge für die Neuordnung der Eigentums- und Besitzverhältnisse unterbreiten</td>
</tr>
<tr>
<td></td>
<td>• kennen den Verfahrensablauf der Umlegung, Zuständigkeiten und die Vorschriften zur Einlegung von Rechtsbehelfen</td>
</tr>
<tr>
<td></td>
<td>• kennen die Maßnahmen zur Beschleunigung des Umlegungsverfahren</td>
</tr>
<tr>
<td></td>
<td>• kennen Zweck und Anwendungsbereich der vereinfachten Umlegung sowie deren Verfahrensablauf</td>
</tr>
<tr>
<td></td>
<td>Grundstücksbewertung</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen Wertbegriffe und Grundlagen des Baulandmarktes</td>
</tr>
<tr>
<td></td>
<td>• verstehen den Begriff der Verkehrswertdefinition</td>
</tr>
<tr>
<td></td>
<td>• kennen die Basis der Grundstückswertermittlung wie Kaufpreissammlung, Ableitung der erforderlichen Daten, Bodenrichtwerte</td>
</tr>
<tr>
<td></td>
<td>• können die verschiedenen Verfahren der Grundstückswertermittlung anwenden und deren Anwendungsbereiche unterscheiden</td>
</tr>
<tr>
<td></td>
<td>Landentwicklung</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• sind über die Rahmenbedingungen für die Entwicklung der ländlichen Räume in Deutschland informiert</td>
</tr>
</tbody>
</table>
- haben sich mit dem landwirtschaftlichen Strukturwandel aufgrund der Schaffung eines gemeinsamen Agrarmarktes der EU, der technischen Rationalisierungen und der landespflegerischen Rahmenbedingungen auseinander gesetzt
- verfügen über Strategien, die ländlichen Gemeinden und Regionen als eigenständige, vielfältig ausgeformte Lebensräume zu stärken
- sind über die Ziele und Strategien von Bodenordnungsverfahren nach dem Flurbereinigungsgesetz informiert
- beherrschen Abläufe von Bodenordnungsverfahren nach Flurbereinigungsgesetz
- können ein Flurbereinigungsverfahren abgrenzen und Vorstandswahlen mit einem Vorstand der Teilnehmergemeinschaften durchführen
- verfügen über Kenntnisse, um einen Plan über die gemeinschaftlichen und öffentlichen Anlagen aufzustellen
- beherrschen die praktizierten örtlichen und vermessungstechnischen Arbeiten in Flurbereinigungsverfahren
- kennen die wesentlichen Grundlagen der Wertermittlung bei Bodenordnungsverfahren nach dem Flurbereinigungsgesetz
- haben die aktive Bürgerbeteiligung im Rahmen des Planwunschtermins gelernt und verfügen über Kenntnisse, um einen Flurbereinigungsplan zu entwerfen
- verfügen über Grundkenntnisse der Finanzierung und rechtlichen Ausführung des Flurbereinigungsplans
- sind über die Berichtigung der öffentlichen Bücher und die Schlussfeststellung des Verfahrens unterrichtet

| Modulvoraussetzungen | Amtliche Geobasisinformation mindestens parallel dazu
Recht mindestens parallel dazu |
|----------------------|--|

<table>
<thead>
<tr>
<th>Modulinhalt</th>
<th>Ortsplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Aufbau des Planungsrechts in Deutschland</td>
</tr>
<tr>
<td></td>
<td>• Allgemeine Vorschriften der Bauleitplanung im Baugesetzbuch</td>
</tr>
<tr>
<td></td>
<td>• Inhalt und Zweck des Flächennutzungsplanes</td>
</tr>
<tr>
<td></td>
<td>• Inhalt und Zweck des Bebauungsplanes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bodenordnung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Instrumente des kommunalen Bodenmanagements</td>
</tr>
<tr>
<td></td>
<td>• Zweck und Anwendungsbereich der Umlegung nach dem BauGB</td>
</tr>
<tr>
<td></td>
<td>• Verfahrensablauf der Umlegung und Zuständigkeiten</td>
</tr>
<tr>
<td></td>
<td>• Verteilungsmaßstab, Zuteilungs- und Abfindungsgrundsätze</td>
</tr>
<tr>
<td></td>
<td>• Aufstellung des Umlegungsplanes</td>
</tr>
<tr>
<td></td>
<td>• Zweck und Anwendungsbereich der vereinfachten Umlegung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundstücksbewertung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Wertbegriffe und Baulandmarkt</td>
</tr>
<tr>
<td></td>
<td>• Verkehrswertdefinition</td>
</tr>
<tr>
<td></td>
<td>• Kaufpreissammlung, Ableitung der erforderlichen Daten, Bodenrichtwerte</td>
</tr>
<tr>
<td></td>
<td>• Vergleichs-, Ertrags-, Sachwertverfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landentwicklung</th>
<th>Vorlesungsspezifisch:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Ziele und Ablauf der Verfahren nach dem Flurbereinigungsgesetz</td>
</tr>
<tr>
<td></td>
<td>• Abgrenzung und Einleitung von Verfahren nach dem FlurbG, Aufgaben der Teilnehmergemeinschaften und des Verbandes der Teilnehmergemeinschaften</td>
</tr>
<tr>
<td></td>
<td>• Plan über die gemeinschaftlichen und öffentlichen Anlagen und dessen Umsetzung</td>
</tr>
</tbody>
</table>
| • Örtliche vermessungstechnische Arbeiten, verfahrensbezogene Rechenarbeiten, Register und Karten in Verfahren nach dem FlurbG
• Wertermittlungsverfahren in Verfahren nach dem FlurbG
• Planwunschtitermin und Entwurf des Flurbereinigungsplans
• Rechtliche Ausführung und Schlussfeststellung des Verfahrens übergangsspezifisch:
• Planerische Arbeiten für einen Strichentwurf des Plans über die gemeinschaftlichen und öffentlichen Anlagen in Projektgruppen erarbeiten
• Entwurf des Zuteilungsplans anhand von Fallbeispielen diskutieren |

| Lehrmethoden | Vorlesung 75%
Stofferarbeitung in Form von Seminarvorträgen 15%
Übung 10% |

| Leistungsnachweise | Studienleistung: Übungen, Seminare
Prüfungsleistung: Klausur (120 – 150 Minuten) oder mündliche Prüfung (wird zu Begin der Vorlesung bekannt gegeben) |

| ECTS Credits | 6 |

| SWS | 5 |

| Workload | 180 Stunden (Annahme 16 Wochen / Semester)
Präsenzzeit Vorlesungen und Übungen (5 SWS à 45 min) 60 Stunden ≈ 33 %
Ausrüstungen der Übungen 10 Stunden ≈ 6 %
Seminaristische Stofferarbeitung 30 Stunden ≈ 17 %
Vor- und Nachbereitung sowie Prüfungsvorbereitung 80 Stunden ≈ 44 % |

| Empfohlene Einordnung | 5. Studiensemester
4. Studiensemester möglich |

| Medienformen | verbale interaktive Präsentation der Modulinhalte, Einsatz von Printmedien (Lehrbücher, Vorlesungsskripte), Unterlagen digital zum Download verfügbar, intensive Nutzung von www-Ressourcen (Hypertexte, Online Tutorials, News Groups) |

| Literatur | Gesetze und Verordnungen:
Baugesetzbuch, Raumordnungsgesetz, Flurbereinigungsgesetz, Bauverwaltungsverordnung, Planzeichenerverordnung, Immobilienwertermittlungsverordnung, Gutachterausschussverordnung in den jeweils gültigen Fassungen
Ortplanung / Bodenordnung:
• Battis/Krautzberger/Löhr: Kommentar zum BauGB, 11. Auflage, Beck Verlag
• Dieterich: Baulandumlegung, 5. Auflage, Beck Verlag
Verkehrswertermittlung:
• Oberer Gutachterausschuss für Grundstückswerte für den Bereich des Landes Rheinland-Pfalz: Landesgrundstücksmarktbericht, aktuellste Fassung
• Kleiber: Verkehrswertermittlung von Grundstücken – Kommentar und Handbuch, Bundesanzeiger Verlag mbH, Köln, 2007
• Sprengnetter: Sprengnetter Immobilienbewertung – Lehrbuch und Kommentar, Verlag Sprengnetter GmbH, Sinzig, 2010
• Sprengnetter: Immobilienbewertung – Marktdaten und Arbeitshilfen, Verlag Sprengnetter GmbH, Sinzig, 2010
Landentwicklung:
• Beiträge der Konferenzreihe "Zukunft ländlicher Räume" des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz, (BMELV) Sonderheft 217,
- Deutsche Landeskulturgesellschaft (DKLV) Schriftenreihe, ausgewählte Artikel, http://www.zalf.de/home_zalf/sites/dlkg/schrift.html
<table>
<thead>
<tr>
<th>Modul</th>
<th>Technisches Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. K. Böhm</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K. Böhm, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| Modulziele | Die Studierenden sind in der Lage,
| | • Fachausdrücke aus Geoinformatik und Vermessung in englischer Sprache zu benennen,
| | • englischsprachige fachliche Abhandlungen zu verstehen,
| | • an fachlichen Diskussionen in englischer Sprache teilzunehmen mit dem Fokus des Abbaus von Hemmungen |
| Modulvoraussetzungen | Grundkenntnisse der englischen Sprache (Schulkenntnisse)
| | Grundlagen der Vermessung und Geoinformatik (als Sprachthemen) |
| Modulinhalte | • General Matters: Numbers, date and time, profession, traveling
| | Business: Positions offered / wanted, letters, curriculum vitae, conferences, project planning, interviews, applications, debating
| | • Computer Science: Operating systems, multimedia, networks, internet, the word wide web, application programmes, new trends such as cloud computing
| | • Geoinformatics: New developments in GIS, map oriented internet applications. New trends such as location based applications and OGC
| | • Surveying, for instance: Simple surveying instruments, simple surveying methods, electronic distance measurements, theodolites and angular measurements, polar surveys, traversing, intersection, resection and arc section, leveling instruments, leveling methods, projections and coordinate systems, laser scanning, global positioning system
| | • Geodesy, for instance: Method of least squares, geodetic surveying, geoid and reference spheroids, geodetic astronomy, observation methods in higher geodesy |
| Lehrmethoden | Vorlesung in englischer Sprache 50%
| | Schriftliche Übungen 10%
| | Mündliche Übungen in englischer Sprache in Kleingruppen (Diskussionen, Präsentationen) 40% |
| Leistungsnachweise | Klausur
| | Präsentationen im Rahmen der Übungen |
| ECTS Credits | 6 |
| SWS | 5 |
| Workload | 180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67% |
| Empfohlene | 3. Studiensemester,
| Einordnung | 4. oder 5. Studiensemester möglich |
| Medienformen | • Vorlesung ausschließlich in englischer Sprache, dabei wird eine Vokabelliste projiziert. Teils Tafelanschrieb, teils Verwendung englischer Texte aus Lehrbüchern, Internet und Prospekten in Umdrucken.
| | • Übungen als Gruppengespräch in Kleingruppen und Präsentationen der Studierenden
| | • Einsatz einer eLearning-Plattform |
| Literatur | Auszüge aus englischen Lehr- und Handbüchern (z.B. Oxford English for Information Technology), Internet, Prospekten, Ausgewählte Internet Sites:
| | http://www.geoinformatik.uni-rostock.de/woerterbuch.asp
| | http://www.bkg.bund.de/nn_159914/EN/FederalOffice/InformationServices/fig__node.html__nnn=true
<p>| | http://grass.osgeo.org/wiki/GRASS_Translation_Glossary |</p>
<table>
<thead>
<tr>
<th>Modul</th>
<th>Präsentationstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. H. Müller, Prof. Dr. K.-A. Klinge</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. H. Müller, Prof. Dr. K.-A. Klinge</td>
</tr>
</tbody>
</table>
| **Modulziele** | Die Studierenden sind in der Lage
• Merkmale einer guten Präsentation zu erkennen
• Sachverhalte auf wissenschaftlicher Grundlage überzeugend in einem mündlichen Vortrag zu präsentieren
• unterschiedliche Medien sicher zu handhaben und in sinnvoller Kombination einzusetzen |
| **Modulvoraussetzungen** | keine |
| **Modulinhalte** | Grundlagen der mündlichen und schriftlichen Präsentationstechnik:
• Kommunikationsabläufe
• Manuskripterstellung
• Textformulierung
Mündliche Präsentation: Medieneinsatz, praktische Vortragstechnik mit Übungen
Bewertung der Präsentation durch das Auditorium |
| **Lehrmethoden** | Vorlesung 25%
Übung 50%
Gruppengespräch 25%
Übung: Einzelpräsentation aller Studierenden |
| **Leistungsnachweise** | Mündliche Einzelpräsentation
Bewertung im Gruppengespräch |
| **ECTS Credits** | 3 |
| **SWS** | 3 |
| **Workload** | 90 Stunden; Präsenzzeit 33%
Vorbereitung eigene Präsentation 67% |
| **Empfohlene Einordnung** | 5. Studiensemester
3. oder 4. Studiensemester möglich |
<p>| Medienformen | verbale interaktive Präsentation der Modulinhalte, Unterstützung durch per Videobeamer projizierte Animationen, Einsatz von Printmedien (Lehrbücher, Vorlesungsskripte), Unterlagen digital zum Download verfügbar, intensive Nutzung von www-Ressourcen (Hypertexte, Online Tutorials, News Groups). u.a. der Websites von Hardware-Herstellern |</p>
<table>
<thead>
<tr>
<th>Modul</th>
<th>Recht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. H. Müller</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Dr. C. Gericke, A. Weilert (beide Lehrbeauftragte)</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| **Modulinhalte** | • Bedeutung und Aufgaben des Rechts
• Rechtsquellen
• Privatrecht und Öffentliches Recht
• Rechtssubjekte
• Rechtsobjekte
• Rechtshandlungen
• Recht der Stellvertretung
• Verjährung |
| **Lehrmethoden** | Vorlesung 67%
Übung 33% |
| **Leistungsnachweis** | Klausur oder mündliche Prüfung |
| **ECTS Credits** | 3 |
| **SWS** | 2 |
| **Workload** | 90 Stunden; Vorlesungen und Übungen 33%
Vor- und Nachbereitung, sowie Klausurvorbereitung 67% |
| **Empfohlene Einordnung** | 5. Studiensemester,
3. oder 4. Studiensemester möglich |
<p>| Medienformen | Skript mit Folien (Beamer), Tafel, Internet |
| Literatur | Grundgesetz, Bürgerliches Gesetzbuch in der jeweils gültigen Fassung |</p>
<table>
<thead>
<tr>
<th>Modul</th>
<th>Betriebswirtschaftslehre und Projektmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. Th. Leonhard</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Th. Hasslinger (Lehrbeauftragter)</td>
</tr>
<tr>
<td>Modulziele</td>
<td>Die Studierenden sind in der Lage, technische Projektbearbeitungen in der betrieblichen Umgebung wirtschaftlich und zeitmäßig einzustufen und zu steuern. Sie werden in die Lage versetzt, kaufmännische Anforderungen der Unternehmensgründung und -führung zu lösen.</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>• Einführung in das Wirtschaften der Betriebe</td>
</tr>
<tr>
<td></td>
<td>• Betriebliche Funktionen, Unternehmungsziele</td>
</tr>
<tr>
<td></td>
<td>• Wahl der Rechtsform</td>
</tr>
<tr>
<td></td>
<td>• Kosten- und Leistungsrechnung, Kostenarten-, Kostenstellen- und Kostenträgerrechnung</td>
</tr>
<tr>
<td></td>
<td>• Betriebsabrechnungsbogen, Grundlagen des Jahresabschlusses, Bilanz, Gewinn- und Verlustrechnung, Unternehmenssteuern</td>
</tr>
<tr>
<td></td>
<td>• Einführung in das Arbeitsrecht</td>
</tr>
<tr>
<td></td>
<td>• Unternehmensführung</td>
</tr>
<tr>
<td></td>
<td>• Projektplanung, zeitlicher Ablauf, Netzplantechnik, Balkendiagramme</td>
</tr>
<tr>
<td></td>
<td>• Vergabewesen, Leistungsverzeichnis, Angebot, Auftrag</td>
</tr>
<tr>
<td></td>
<td>• Klärung von Verantwortlichkeiten</td>
</tr>
<tr>
<td></td>
<td>• Einsatz von Messgerät und Personal</td>
</tr>
<tr>
<td></td>
<td>• Gebührenordnung, Abrechnung</td>
</tr>
<tr>
<td>Lehrmethoden</td>
<td>Vorlesung 80%</td>
</tr>
<tr>
<td></td>
<td>Übung 20%: Praktische Falllösungen und Einüben des theoretischen Lehrstoffes; Erarbeiten von Lösungsskizzen; praktische Projektdurchführung auf der Grundlage der in der Vorlesung vorgestellten Instrumente und Verfahren</td>
</tr>
<tr>
<td>Leistungsnachweise</td>
<td>Projektarbeit: Erarbeiten einer Präsentation „Unternehmensgründung und Finanzierungskonzept“; standardisiertes Projektmanagement- Benotung der Gruppenarbeit (1/3) Klausur (2/3 der Gesamtnote)</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>6</td>
</tr>
<tr>
<td>SWS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>180 Stunden; Vorlesungen und Übungen 33%, Vor- und Nachbereitung sowie Klausurvorbereitung 67%</td>
</tr>
<tr>
<td>Empfohlene Einordnung</td>
<td>Ab 3. Studiensemester (Wahlpflichtmodul)</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Skript mit Folien (Overhead-/ Beamer), Tafel, Übungen am Rechner</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Gabler: Gabler Wirtschaftslexikon classic – Taschenbuch Kassette mit 8 Bänden, Wiesbaden</td>
</tr>
<tr>
<td></td>
<td>• Lexikon des Kaufmanns Handbuch für Geldfragen und Kaufmannswesen, Frankfurt/ Berlin</td>
</tr>
<tr>
<td></td>
<td>• Bürgerliches Gesetzbuch (BGB)</td>
</tr>
<tr>
<td></td>
<td>• VOB/B- Beck’scher VOB- Lommentar; Hrsg. Ganten u.a., München</td>
</tr>
<tr>
<td></td>
<td>• Unwirksame Bauvertragsklauseln nach dem AGB- Gesetz, Glatzel, L.; Hofmann, O.; Frikel, E., Stamsried (ab 10. Auflage nutzen)</td>
</tr>
<tr>
<td></td>
<td>• VOB- Musterbriefe für Auftraggeber, Heiermann, W.; Linke, L.</td>
</tr>
<tr>
<td></td>
<td>• Handbuch des privaten Baurechts, München</td>
</tr>
<tr>
<td></td>
<td>• Architektenrecht, Löffelmann, P.; Fleischmann, G., Düsseldorf</td>
</tr>
<tr>
<td></td>
<td>• Die ersten 100 Geschäftstage eines Architekten, Minckwitz, U., Berlin</td>
</tr>
</tbody>
</table>
- Zahlungsforderungen sichern und durchsetzen - 16 baupraktische Wege, Nagel, U.
- Grundlagen der Bauwirtschaft; Pfarr, K., Wuppertal
- Grundlagen des privaten Baurechts; Quack, F., Köln
- Softwarepaket für Gründer und junge Unternehmer; Hrsg. BMWi, Berlin
- Architekten- und Ingenieurverträge; Theis, St., Köln
- Bauleitung und Projektmanagement für Architekten und Ingenieure; Hrsg. Rösch, W., Augsburg
- Verdingungsordnung für Bauleistungen; Beck-Texte, München
- Vergaberecht; Beck-Texte, München
<table>
<thead>
<tr>
<th>Modul</th>
<th>Praxisprojekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlicher</td>
<td>Prof. Dr. K. Böhm, Prof. Dr. J. Zaiser</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K. Böhm, Prof. Dr. J. Zaiser</td>
</tr>
</tbody>
</table>
| Modulziele | • Umsetzung des im bisherigen Studium erworbenen theoretischen Wissens in die Praxis
| | • Lernen durch Anschauung und aktive Teilnahme an praktischen Arbeiten
| | • Sammeln von praktischen Erfahrungen und Ergänzung des theoretischen Wissens durch praktische Erkenntnisse
| | • Sensibilisierung für die im Berufsleben wichtige Handlungs- und Methodenkompetenz, personale und soziale Kompetenz (Schlüsselkompetenzen). |
| Modulvoraussetzungen| Vor Beginn des Praxisprojekts müssen mindestens 96 ECTS aus dem aktuellen Studiengang nachgewiesen werden. |
| Modulinhalte | • Studierenden suchen mit Unterstützung durch die Lehreinheit eine Praxisstelle in Industrie, Behörde oder Ingenieurbüro. Dort sollen sie durch selbständige Bearbeitung oder Mitarbeit an praktischen Projekten erkennen, wie die im Studium erworbenen Kenntnisse in der beruflichen Praxis eingesetzt werden.
| | • Das Praxisprojekt wird durch Veranstaltungen der Lehreinheit begleitet.
| | · Die Studierenden müssen Zielvereinbarungen vorlegen, in denen sie die an der Praxisstelle verfolgten Ziele, die geplanten Maßnahmen zur Zielerreichung und die gewünschten Ergebnisse beschreiben.
| | · In einer Lehrveranstaltung zu Beginn des Praxisprojektes berichten die Studierenden über ihre Praxisstelle und Ziele.
| | · Nach Beendigung des Praxisprojektes stellen die Studierenden ein oder mehrere von ihnen selbst bearbeitete Projekte in einem 20-minütigen Kolloquium vor.
| | · Die Arbeiten an der Praxisstelle sind in einem Praxisprojektbericht zu dokumentieren. |
| Lehrmethoden | Praktikum sowie 2-3 Tage Kolloquium an der FH-Mainz |
| Leistungsnachweise | • Teilnahme an Lehrveranstaltungen
| | • Einreichung der Zielvereinbarung
| | • Kolloquium mit mündlichem Vortrag
| | • Schriftlicher Praxisprojektbericht
| | • Präsentation der Projektergebnisse
<p>| | • Nachweis über Praxistätigkeit im Umfang von 16 Wochen |
| ECTS Credits | 18 |
| SWS | 15 |
| Workload | 540 Stunden: 16 Wochen am Praxisprojektort abzüglich max. 3 Tage für Lehrveranstaltungen |
| Empfohlene Einordnung | 6. Studiensemester Bachelor |</p>
<table>
<thead>
<tr>
<th>Modul</th>
<th>Bachelor Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche</td>
<td>Prof. Dr. J. Klonowski</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Dr. K. Böhm, Prof. Dr. F. Boochs, Prof. Dr. K.-C. Bruhn, Prof. Dr. F. Kern, Prof. Dr. K.-A. Klinge, Prof. Dr. J. Klonowski, Prof. Dr. H. Müller, Prof. Dr. T. Leonhard, Prof. Dr. M. Schlüter, Prof. Dr. J. Zaiser und Lehrbeauftragte</td>
</tr>
</tbody>
</table>
| **Modulziele** | • Fähigkeit ein praktisches Fachproblem ggf. aus einem interdisziplinären mit wissenschaftlichen Methoden innerhalb einer vorgegebenen Frist zu bearbeiten
 • Fähigkeit zur Entwicklung und Ausarbeitung von Lösungsansätzen und Konzepten für das Fachproblem
 • Fähigkeit zur eigenständigen Planung, Durchführung, Präsentation (Vortrag, Poster, Internetauftritt) und Verteidigung des bearbeiteten Fachproblems |
| **Modulvoraussetzungen** | Begonnenes Praxisprojekt und mindestens 126 ECTS-Credits aus dem aktuellen Studiengang |
| **Modulinhalte** | • Selbstständige Bearbeitung eines Projektes aus dem Umfeld Geoinformatik und Vermessung ggf. auch mit interdisziplinärem Bezug; Kooperationen mit der Berufspraxis sind erwünscht
 • Hochschulöffentliches Kolloquium (mindestens 20 Minuten) und fachliche Diskussion der gewonnenen Projektergebnisse |
| **Lehrmethoden** | Selbstständige wissenschaftliche Projektarbeit mit seminaristischer hochschulinterner Präsentation und Verteidigung der Arbeit |
| **Leistungsnachweise** | Benotete Master-Arbeit (65%)
 Kolloquium mit Verteidigung (25%)
 Poster (5%)
 Internetpräsentation (5%) |
| **ECTS Credits** | 12 |
| **SWS** | Selbstständige wissenschaftliche Projektarbeit mit seminaristischer hochschulinterner Präsentation und Verteidigung der Arbeit |
| **Workload** | 360 Stunden Eigenstudium inklusive Gesprächstermine mit dem Betreuer, Bearbeitung, Kolloquium und aller Präsentationsformen |
| **Empfohlene Einordnung** | 6. Semester Master-Studiengang |
| **Medienformen** | Selbstständige Projektarbeit mit Kolloquium |
| **Literatur** | Eigene Recherche, themenspezifische Literatur (empfohlen von den Betreuern) |